Characterization of Dental Lab Putty Materials Components Made from Glutinous Rice

2019 ◽  
Vol 829 ◽  
pp. 247-251
Author(s):  
Kosterman Usri ◽  
Veni Takarini ◽  
Renny Febrida

This paper presents the preliminary results from the experiment of making lab putty from glutinous rice. The experiment aims to use natural, safe, and cheap ingredients to synthesis reliable products of making direct palatal matrix index of class IV dental composite restoration, by characterizing the particle morphology and how each element binds to one another as well as its compositions. Hand manipulation on lab putty was carried out on two different samples accompanied by two fabricated samples with size of 4x2 cm. Particle morphology was characterized with JEOL Scanning Electron Microscope (SEM) and sample composition confirmed using Electron Dispersive Spectroscopy (EDS). The SEM result revealed that sample A shows smooth morphology from well-mixed glutinous rice tend bind with silicon rubber paste and bovine gelatin. Meanwhile, sample B shows hexagonal and polyhedral morphology that appears to be similar agglomerated form to the sample that marketed available (sample C and D). From the EDS result, it can be confirmed that compositionally, the four samples are similar. To conclude, lab putty made from glutinous rice can be considered as an option of low cost and safe palatal matrix index for class IV composite restoration. Better development of mechanical properties shall be conducted by future research.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammed Ismael

Abstract Photocatalytic splitting of water into hydrogen and oxygen using semiconductor photocatalysts and light irradiation has been attracted much attention and considered to be an alternative for nonrenewable fossil fuel to solve environmental problems and energy crisis and also an as promising approach to produce clean, renewable hydrogen fuel. Owing to their various advantages such as low cost and environmental friendly, chemical, and thermal stability, appropriate band structure, graphitic carbon nitride (g-C3N4 ) photocatalysts have gained multitudinous attention because of their great potential in solar fuels production and environmental remediation. However, due to its fast charge carrier’s recombination, low surface, and limited absorption of the visible light restrict their activity toward hydrogen evolution and numerous modification techniques were applied to solve these problems such as structural modification, metal/nonmetal doping, and noble metal loading, and coupling semiconductors. In this chapter, we summarize recent progress in the synthesis and characterization of the g-C3N4-based photocatalyst. Several modification methods used to enhance the photocatalytic hydrogen production of g-C3N4-based photocatalyst were also highlighted. This chapter ends with the future research and challenges of hydrogen production over g-C3N4-based photocatalyst.


Author(s):  
O. L. Shaffer ◽  
M.S. El-Aasser ◽  
C. L. Zhao ◽  
M. A. Winnik ◽  
R. R. Shivers

Transmission electron microscopy is an important approach to the characterization of the morphology of multiphase latices. Various sample preparation techniques have been applied to multiphase latices such as OsO4, RuO4 and CsOH stains to distinguish the polymer phases or domains. Radiation damage by an electron beam of latices imbedded in ice has also been used as a technique to study particle morphology. Further studies have been developed in the use of freeze-fracture and the effect of differential radiation damage at liquid nitrogen temperatures of the latex particles embedded in ice and not embedded.Two different series of two-stage latices were prepared with (1) a poly(methyl methacrylate) (PMMA) seed and poly(styrene) (PS) second stage; (2) a PS seed and PMMA second stage. Both series have varying amounts of second-stage monomer which was added to the seed latex semicontinuously. A drop of diluted latex was placed on a 200-mesh Formvar-carbon coated copper grid.


Author(s):  
B. M. Culbertson ◽  
M. L. Devinev ◽  
E. C. Kao

The service performance of current dental composite materials, such as anterior and posterior restoratives and/or veneer cements, needs to be improved. As part of a comprehensive effort to find ways to improve such materials, we have launched a broad spectrum study of the physicochemical and mechanical properties of photopolymerizable or visible light cured (VLC) dental composites. The commercially available VLC materials being studied are shown in Table 1. A generic or neat resin VLC system is also being characterized by SEM and TEM, to more fully understand formulation variables and their effects on properties.At a recent dental research meeting, we reported on the differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) characterization of the materials in Table 1. It was shown by DSC and DMA that the materials are substantially undercured by commonly used VLC techniques. Post curing in an oral cavity or a dry environment at 37 to 50°C for 7 or more hours substantially enhances the cure of the materials.


2019 ◽  
Vol 4 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Alison E. Fowler ◽  
Rebecca E. Irwin ◽  
Lynn S. Adler

Parasites are linked to the decline of some bee populations; thus, understanding defense mechanisms has important implications for bee health. Recent advances have improved our understanding of factors mediating bee health ranging from molecular to landscape scales, but often as disparate literatures. Here, we bring together these fields and summarize our current understanding of bee defense mechanisms including immunity, immunization, and transgenerational immune priming in social and solitary species. Additionally, the characterization of microbial diversity and function in some bee taxa has shed light on the importance of microbes for bee health, but we lack information that links microbial communities to parasite infection in most bee species. Studies are beginning to identify how bee defense mechanisms are affected by stressors such as poor-quality diets and pesticides, but further research on this topic is needed. We discuss how integrating research on host traits, microbial partners, and nutrition, as well as improving our knowledge base on wild and semi-social bees, will help inform future research, conservation efforts, and management.


2018 ◽  
Vol 32 (2) ◽  
pp. 103-119
Author(s):  
Colleen M. Boland ◽  
Chris E. Hogan ◽  
Marilyn F. Johnson

SYNOPSIS Mandatory existence disclosure rules require an organization to disclose a policy's existence, but not its content. We examine policy adoption frequencies in the year immediately after the IRS required mandatory existence disclosure by nonprofits of various governance policies. We also examine adoption frequencies in the year of the subsequent change from mandatory existence disclosure to a disclose-and-explain regime that required supplemental disclosures about the content and implementation of conflict of interest policies. Our results suggest that in areas where there is unclear regulatory authority, mandatory existence disclosure is an effective and low cost regulatory device for encouraging the adoption of policies desired by regulators, provided those policies are cost-effective for regulated firms to implement. In addition, we find that disclose-and-explain regulatory regimes provide stronger incentives for policy adoption than do mandatory existence disclosure regimes and also discourage “check the box” behavior. Future research should examine the impact of mandatory existence disclosure rules in the year that the regulation is implemented. Data Availability: Data are available from sources cited in the text.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 140
Author(s):  
Lichen Liu ◽  
Ziping Cao ◽  
Min Chen ◽  
Jun Jiang

This paper reports the fabrication and characterization of (Bi0.48Sb1.52)Te3 thick films using a tape casting process on glass substrates. A slurry of thermoelectric (Bi0.48Sb1.52)Te3 was developed and cured thick films were annealed in a vacuum chamber at 500–600 °C. The microstructure of these films was analyzed, and the Seebeck coefficient and electric conductivity were tested. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of these samples. Conductive films were obtained after annealing and led to acceptable thermoelectric performance. While the properties of these initial materials are not at the level of bulk materials, this work demonstrates that the low-cost tape casting technology is promising for fabricating thermoelectric modules for energy conversion.


Author(s):  
Livio Cricelli ◽  
Michele Grimaldi ◽  
Silvia Vermicelli

AbstractIn recent years, Open Innovation (OI) and crowdsourcing have been very popular topics in the innovation management literature, attracting significant interest and attention, and inspiring a rich production of publications. Although these two topics share common themes and address similar managerial challenges, to the best of our knowledge, there is no systematic literature review that digs deep into the intersection of both fields. To fill in this gap a joint review of crowdsourcing and OI topics is both timely and of interest. Therefore, the main objective of this study is to carry out a comprehensive, systematic, and objective review of academic research to help shed light on the relationship between OI and crowdsourcing. For this purpose, we reviewed the literature published on these two topics between 2008 and 2019, applying two bibliometric techniques, co-citation and co-word analysis. We obtained the following results: (i) we provide a qualitative analysis of the emerging and trending themes, (ii) we discuss a characterization of the intersection between OI and crowdsourcing, identifying four dimensions (strategic, managerial, behavioral, and technological), (iii) we present a schematic reconceptualization of the thematic clusters, proposing an integrated view. We conclude by suggesting promising opportunities for future research.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seong-heum Kim ◽  
Youngbae Hwang

Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints. This study investigates the major breakthroughs and current progress in deep learning-based monocular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their relevant attributes. Based on this simple sensor modality for practical applications, deep learning-based monocular 3D object detection methods that overcome significant research challenges are categorized and summarized. We present the key concepts and detailed descriptions of representative single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the detection models on their baseline benchmarks. Finally, we explore several directions for future research on monocular 3D object detection.


Sign in / Sign up

Export Citation Format

Share Document