Aluminum Surface Inclusions of Insoluble Lead Enhanced through Mechanical Attrition of Al Substrates

2020 ◽  
Vol 835 ◽  
pp. 93-100
Author(s):  
Mohamed Refaat Mohamed Ebrahim ◽  
Safaa Kamel El Mahy

Preparation of aluminum substrates for surface segregation enhancement of insoluble lead deposition was achieved. Sever plastic deformation 'SPD' of Al sheets was done using surface mechanical attrition treatment 'SMAT' in air. Scanning electron microscope SEM of etched Al substrates cuts showed micro-cavities both on the surface and in-depth. Orientation effects and surface inclusions of Pb inside Al surface found at 40 and 50 Hz - SMAT Al by X-Ray diffraction and energy dispersive of X-Rays EDX. Concluding that SMAT frequency limits used enhanced surface inclusions without annealing that could improve adhesion of industrial protective Pb coatings.

2010 ◽  
Vol 442 ◽  
pp. 152-157 ◽  
Author(s):  
M. Mansoor ◽  
J. Lu

In the domain of incremental nanotechnology, surface mechanical attrition treatment is a technique which can transform superficial structure of a material to nanocrystalline without changing the chemical composition. This study is a part of the development and implementation of the technique by using ultrasonic vibrations. The material used is pure titanium in rolled and annealed condition. The nanocrystalline structure is characterized using X-ray diffraction (XRD), and transmission electron microscopy (TEM). The measured grain size is in the order of 5~60 nm. A correlation in the results of XRD and TEM is also discussed.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 424 ◽  
Author(s):  
Karima Aoudia ◽  
Salim Lamri ◽  
Sofiane Achache ◽  
Delphine Retraint ◽  
Christophe Verdy ◽  
...  

This study focuses on the effects of a surface mechanical attrition treatment on the structural and mechanical behavior of arc-sprayed Ni–Cr coatings deposited on steel substrates. The surface of the as-sprayed and SMATed coatings was characterized by X-ray diffraction, Scanning Electron Microscopy, and non-contact profilometry. The coating porosity was evaluated by using image analysis software. The residual stresses were determined using X-ray diffraction with the sin2ψ. Indentation tests were carried out on the cross sections of the different coatings to evaluate their hardness. The wear properties of the coatings were assessed using a pin-on-disk tester at ambient temperature without lubrication. The results showed that surface mechanical attrition treatment (SMAT) induced a grain refinement on the coating surface due to severe plastic deformation, which was associated with a significant improvement of the mechanical properties.


Author(s):  
W. Z. Chang ◽  
D. B. Wittry

Since Du Mond and Kirkpatrick first discussed the principle of a bent crystal spectrograph in 1930, curved single crystals have been widely utilized as spectrometric monochromators as well as diffractors for focusing x rays diverging from a point. Curved crystal diffraction theory predicts that the diffraction parameters - the rocking curve width w, and the peak reflection coefficient r of curved crystals will certainly deviate from those of their flat form. Due to a lack of curved crystal parameter data in current literature and the need for optimizing the choice of diffraction geometry and crystal materials for various applications, we have continued the investigation of our technique presented at the last conference. In the present abstract, we describe a more rigorous and quantitative procedure for measuring the parameters of curved crystals.The diffraction image of a singly bent crystal under study can be obtained by using the Johann geometry with an x-ray point source.


1998 ◽  
Vol 5 (3) ◽  
pp. 967-968 ◽  
Author(s):  
Keiichi Hirano ◽  
Atsushi Momose

The phase shift of forward-diffracted X-rays by a perfect crystal is discussed on the basis of the dynamical theory of X-ray diffraction. By means of a triple Laue-case X-ray interferometer, the phase shift of forward-diffracted X-rays by a silicon crystal in the Bragg geometry was investigated.


Author(s):  
Matthew Wilding ◽  
Colin Scott ◽  
Thomas S. Peat ◽  
Janet Newman

The NAD-dependent malonate-semialdehyde dehydrogenase KES23460 fromPseudomonassp. strain AAC makes up half of a bicistronic operon responsible for β-alanine catabolism to produce acetyl-CoA. The KES23460 protein has been heterologously expressed, purified and used to generate crystals suitable for X-ray diffraction studies. The crystals belonged to space groupP212121and diffracted X-rays to beyond 3 Å resolution using the microfocus beamline of the Australian Synchrotron. The structure was solved using molecular replacement, with a monomer from PDB entry 4zz7 as the search model.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 273 ◽  
Author(s):  
José Brandão-Neto ◽  
Leonardo Bernasconi

Macromolecular crystallography at cryogenic temperatures has so far provided the majority of the experimental evidence that underpins the determination of the atomic structures of proteins and other biomolecular assemblies by means of single crystal X-ray diffraction experiments. One of the core limitations of the current methods is that crystal samples degrade as they are subject to X-rays, and two broad groups of effects are observed: global and specific damage. While the currently successful approach is to operate outside the range where global damage is observed, specific damage is not well understood and may lead to poor interpretation of the chemistry and biology of the system under study. In this work, we present a phenomenological model in which specific damage is understood as the result of a single process, the steady excitation of crystal electrons caused by X-ray absorption, which acts as a trigger for the bulk effects that manifest themselves in the form of global damage and obscure the interpretation of chemical information from XFEL and synchrotron structural research.


1992 ◽  
Vol 7 (7) ◽  
pp. 1751-1761 ◽  
Author(s):  
J. Eckert ◽  
J.C. Holzer ◽  
C.E. Krill ◽  
W.L. Johnson

Nanocrystalline fcc metals have been synthesized by mechanical attrition. The crystal refinement and the development of the microstructure have been investigated in detail by x-ray diffraction, differential scanning calorimetry, and transmission electron microscopy. The deformation process causes a decrease of the grain size of the fcc metals to 6–22 nm for the different elements. The final grain size scales with the melting point and the bulk modulus of the respective metal: the higher the melting point and the bulk modulus, the smaller the final grain size of the powder. Thus, the ultimate grain size achievable by this technique is determined by the competition between the heavy mechanical deformation introduced during milling and the recovery behavior of the metal. X-ray diffraction and thermal analysis of the nanocrystalline powders reveal that the crystal size refinement is accompanied by an increase in atomic-level strain and in the mechanically stored enthalpy in comparison to the undeformed state. The excess stored enthalpies of 10–40% of the heat of fusion exceed by far the values known for conventional deformation processes. The contributions of the atomic-level strain and the excess enthalpy of the grain boundaries to the stored enthalpies are critically assessed. The kinetics of grain growth in the nanocrystalline fcc metals are investigated by thermal analysis. The activation energy for grain boundary migration is derived from a modified Kissinger analysis, and estimates of the grain boundary enthalpy are given.


2007 ◽  
Vol 130 ◽  
pp. 7-14 ◽  
Author(s):  
Andrew N. Fitch

The highly-collimated, intense X-rays produced by a synchrotron radiation source can be harnessed to build high-resolution powder diffraction instruments with a wide variety of applications. The general advantages of using synchrotron radiation for powder diffraction are discussed and illustrated with reference to the structural characterisation of crystalline materials, atomic PDF analysis, in-situ and high-throughput studies where the structure is evolving between successive scans, and the measurement of residual strain in engineering components.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 311 ◽  
Author(s):  
Carlotta Giacobbe ◽  
Jonathan Wright ◽  
Dario Di Giuseppe ◽  
Alessandro Zoboli ◽  
Mauro Zapparoli ◽  
...  

Nowadays, due to the adverse health effects associated with exposure to asbestos, its removal and thermal inertization has become one of the most promising ways for reducing waste risk management. Despite all the advances in structure analysis of fibers and characterization, some problems still remain that are very hard to solve. One challenge is the structure analysis of natural micro- and nano-crystalline samples, which do not form crystals large enough for single-crystal X-ray diffraction (SC-XRD), and their analysis is often hampered by reflection overlap and the coexistence of multiple fibres linked together. In this paper, we have used nano-focused synchrotron X-rays to refine the crystal structure of a micrometric tremolite fibres from Val d’Ala, Turin (Italy) after various heat treatment. The structure of the original fibre and after heating to 800 °C show minor differences, while the fibre that was heated at 1000 °C is recrystallized into pyroxene phases and cristobalite.


2014 ◽  
Vol 70 (6) ◽  
pp. 572-582
Author(s):  
Hsin-Yi Chen ◽  
Mau-Sen Chiu ◽  
Chia-Hung Chu ◽  
Shih-Lin Chang

An algorithm is developed based on the dynamical theory of X-ray diffraction for calculating the profiles of the diffracted beam,i.e.the diagrams of the intensity distributionversus2θ when a crystal is fixed at an angle of its maximum diffracted intensity. Similar to Fraunhofer (far-field) diffraction for a single-slit case, in the proposed algorithm the diffracted beam from one atomic layer excited by X-rays is described by the composition of (N+ 1) coherent point oscillators in the crystal. The amplitude and the initial phase of the electric field for each oscillator can be calculated based on the dynamical theory with given boundary conditions. This algorithm not only gives diffraction profiles but also provides the contribution of the excitation of modes when extremely asymmetric diffraction is involved in the diffraction process. Examples such as extremely asymmetric two-beam surface diffraction and three-beam surface diffraction are presented and discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document