Compressive Strength of Dental E-Glass Microfiber-Reinforced Composite Resin in Mouthwash Immersion

2020 ◽  
Vol 840 ◽  
pp. 300-304
Author(s):  
Siti Sunarintyas ◽  
Rifqi Fahmi Affandi ◽  
Widjijono Widjijono

Fiber-reinforced composite resin (FRC) is gaining popularity as dental filling material. In the oral cavity, it will contact with the oral environment including oral cleansing agents. This research was aimed to determine the effect of mouthwash on the compressive strength of FRC. The materials used were E-glass FRC (EverX Posterior, GC Corp, Japan), alcohol mouthwash (Original Listerine, Johnson&Johnson, Indonesia), alcohol-free mouthwash (Listerine Cool Mint Zero, Johnson&Johnson, Indonesia). Forty-five FRCs were made in cylindrical shapes. Specimens were divided into 2 groups of mouthwash immersion: alcohol and alcohol-free mouthwash. The groups were sub-grouped by 0, 6, 12, and 24 h immersion. Samples were recorded for compressive strength by Universal Testing Machine. The data were analyzed by ANOVA. The result of compressive strength values (MPa) were (alcohol mouthwash): 293.59±30.54 (0 h), 284.43±46.91 (6 h), 268.71±44.66 (12 h), 252.19±31.49 (24 h); (alcohol-free mouthwash): 294.12±28.17 (0 h), 287.30±35.56 (6 h), 273.32±41.94 (12 h), 260.82±40.67 (24 h). Statistical analysis revealed there was no significant influence of mouthwash type (alcohol or alcohol-free mouthwash), immersion duration (0, 6, 12, 24 h), and combination of mouthwash type and immersion duration (p>0.05) to the compressive strength of FRCs. The conclusions were the mouthwash types, immersion duration, and combination of mouthwash type and immersion duration did not influence the compressive strength of E-glass FRC

2021 ◽  
Vol 48 (2) ◽  
pp. 168-175
Author(s):  
Eunyeong Jang ◽  
Jaesik Lee ◽  
Soonhyeun Nam ◽  
Taeyub Kwon ◽  
Hyunjung Kim

This study compared the microleakages and compressive strengths of various base materials.<br/>To evaluate microleakages, 50 extracted permanent premolars were prepared. The teeth divided into 5 groups of 10 each according to the base materials. Cavities with a 5.0 mm width, 3.0 mm length, and 3.0 mm depth were formed on the buccal surfaces of the teeth. After filling the cavities with different base materials, a composite resin was used for final restoration. Each specimen was immersed in 2% methylene blue solution and then observed under a stereoscopic microscope (× 30). To evaluate the compressive strength, 5 cylindrical specimens were prepared for each base material. A universal testing machine was used to measure the compressive strength.<br/>The microleakage was highest in the Riva light cure<sup>TM</sup> group and lowest in the Biodentine<sup>TM</sup> and Well-Root<sup>TM</sup> PT groups. For the compressive strengths, in all groups, acceptable strength values for base materials were found. The highest compressive strength was observed in the Fuji II LC<sup>TM</sup> group and the lowest strength in the Well-Root<sup>TM</sup> PT group.


2020 ◽  
Vol 47 (3) ◽  
pp. 320-326
Author(s):  
Kunho Lee ◽  
Jongsoo Kim ◽  
Jisun Shin ◽  
Miran Han

The aim of this study was to compare compressive strength and microhardness of recently introduced alkasite restorative materials with glass ionomer cement and flowable composite resin.For each material, 20 samples were prepared respectively for compressive strength and Vickers microhardness test. The compressive strength was measured with universal testing machine at crosshead speed of 1 mm/min. And microhardness was measured using Vickers Micro hardness testing machine under 500 g load and 10 seconds dwelling time at 1 hour, 1 day, 7 days, 14 days, 21 days and 35 days.The compressive strength was highest in composite resin, followed by alkasite, and glass ionomer cement. In microhardness test, composite resin, which had no change throughout experimental periods, showed highest microhardness in 1 hour, 1 day, and 7 days measurement. The glass ionomer cement showed increase in microhardness for 7 days and no difference was found with composite resin after 14 days measurement. For alkasite, maximum microhardness was measured on 14 days, but showed gradual decrease.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1303
Author(s):  
Michael Seidenstuecker ◽  
Thomas Schmeichel ◽  
Lucas Ritschl ◽  
Johannes Vinke ◽  
Pia Schilling ◽  
...  

This work aimed to determine the influence of two hydrogels (alginate, alginate-di-aldehyde (ADA)/gelatin) on the mechanical strength of microporous ceramics, which have been loaded with these hydrogels. For this purpose, the compressive strength was determined using a Zwick Z005 universal testing machine. In addition, the degradation behavior according to ISO EN 10993-14 in TRIS buffer pH 5.0 and pH 7.4 over 60 days was determined, and its effects on the compressive strength were investigated. The loading was carried out by means of a flow-chamber. The weight of the samples (manufacturer: Robert Mathys Foundation (RMS) and Curasan) in TRIS solutions pH 5 and pH 7 increased within 4 h (mean 48 ± 32 mg) and then remained constant over the experimental period of 60 days. The determination surface roughness showed a decrease in the value for the ceramics incubated in TRIS compared to the untreated ceramics. In addition, an increase in protein concentration in solution was determined for ADA gelatin-loaded ceramics. The macroporous Curasan ceramic exhibited a maximum failure load of 29 ± 9.0 N, whereas the value for the microporous RMS ceramic was 931 ± 223 N. Filling the RMS ceramic with ADA gelatin increased the maximum failure load to 1114 ± 300 N. The Curasan ceramics were too fragile for loading. The maximum failure load decreased for the RMS ceramics to 686.55 ± 170 N by incubation in TRIS pH 7.4 and 651 ± 287 N at pH 5.0.


2014 ◽  
Vol 566 ◽  
pp. 158-163 ◽  
Author(s):  
A. Yosimoto ◽  
Hidetoshi Kobayashi ◽  
Keitaro Horikawa ◽  
Keiko Watanabe ◽  
Kinya Ogawa

In order to clarify the effect of strain rate and test temperature on the compressive strength and energy absorption of polyimide foam, a series of compression tests for the polyimide foam with two different densities were carried out. By using three testing devices, i.e. universal testing machine, dropping weight machine and sprit Hopkinson pressure bar apparatus, we performed a series of compression tests at various strain rates (10-3~103s-1) and at several test temperatures in the range of room temperature to 280 ̊C. At over 100 s-1, the remarkable increase of flow stress was observed. The negative temperature dependence of strength was also observed.


2015 ◽  
Vol 5 (1) ◽  
pp. 22-26
Author(s):  
Muzin Shahi Shaik ◽  
Snigdha Pattanaik ◽  
Sudhakar Pathuri ◽  
Arunachalam Sivakumar

Introduction: Bond strength is an important property and determines the amount of force delivered and treatment duration in orthodontics. Many light-cured bonding materials are being used; but it is required to determine the most efficient one withdesired bond strength. Objective: To determine and compare the shear bond strength of three visible light-cured composites (Transbond XT, Heliositand Enlight) and two self-cured composites (Rely-a-bond and Concise). Materials & Method: 100 extracted premolars were collected and randomly divided into 5 test groups of different adhesives. Brackets were bonded to the teeth in each test group with the respective adhesive according to the manufacturer’s instructions. Each specimen was debonded using Universal Testing Machine and the shear bond strength for each specimen was calculated. All the groups were compared by ANOVA one-way test. Results: There were statistically significant differences among the five groups (P<0.05). The shear bond strength of Enlight (13.92 ± 3.92) is similar to Transbond XT (14.30 ± 4.35). Conclusion: Light cure composites showed higher bond strength than self cure composites.


2014 ◽  
Vol 26 (3) ◽  
Author(s):  
Jenny Krisnawaty ◽  
Setiawan Natasasmita ◽  
Dudi Aripin

Hybrid composites are mostly used on large cavities as restorative dental materials, whether it is used directly or indirectly. The mechanical properties of composite resin shall increase if it is treated with post cure treatment. The aim of this study is to evaluate compressive strength differences between dry heat and Light Emitting Diodes (LED) treatment on the hybrid dental composite. A quasi-experimental was applied on this research with a total of 30 samples that were divided into two groups. Each sample was tested using LLOYD Universal Testing Machine with 1 mm/min speed to evaluate the compressive strength. The compressive strength results were marked when the sample was broken. The results of two groups were then analyzed using t-test statistical calculation. The results of this study show that post cure treatment on hybrid composite using LED light box (194.138 MPa) was lower than dry heat treatment (227.339 MPa), which was also significantly different from statistical analysis. It can be concluded that compressive strength of LED light box was lower than dry heat post-cure treatment on the hybrid composite resin.


2015 ◽  
Vol 786 ◽  
pp. 43-47
Author(s):  
M. Faizi ◽  
W.M. Syafiq ◽  
M. Afendi ◽  
N.G. Chuen ◽  
Abu Bakar Shahriman

Automotive industries are looking for new implementation to deliver a good finishing product to their customer. By using adhesive material, joining against two steel can replace normal technique which is welding process. However, the strength produced by this method must be investigated. The failure investigation of ductile adhesive intended for use in automotive tubular frame chassis has been assessed using simple tubular lap shear joint. There are two different overlap lengths of tubular adhesive joint considered in this test, i.e., 15 mm and 45 mm. The materials used for the adherents were stainless steel and mild steel, while adhesive used in the experiments was Araldite Standard 90 minutes epoxy resin. Tensile test by utilizing universal testing machine (UTM) was carried out to determine the shear strength of the adhesive joint in different overlap length. Fatigue tests were also conducted. From the results it is found that longer overlap length of the adhesive is preferable for use in automotive tubular frame chassis due to higher failure load it can withstand and better fatigue life.


2011 ◽  
Vol 299-300 ◽  
pp. 480-483 ◽  
Author(s):  
Jing Yuan Yu ◽  
Qiang Li

Porous NiTi alloys were prepared by powder metallurgy method using NH4HCO3as space-holder. The effect of sintering temperature on pore characteristic, phase composition and compressive property of porous NiTi alloys was studied by XRD, SEM, EDS and a universal testing machine. The results show with the increase of sintering temperature the porosity of porous NiTi alloys first increases and then decreases, but the content of NiTi phase, compressive strength and modulous of sintered products continuously increase. When sintered at 980°C for 2h, the porous NiTi alloys have higher porosity of 53.6%, better compressive strength of 173.7MPa and elastic modulous of 4.2GPa. The phases of sinter products are mainly composed by TiNi, Ti2Ni, and TiNi3phases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Teh Sabariah Binti Abd Manan ◽  
Nur Liyana Mohd Kamal ◽  
Salmia Beddu ◽  
Taimur Khan ◽  
Daud Mohamad ◽  
...  

AbstractThe potassium (K) and sodium (Na) elements in banana are needed for hydration reaction that can enhance the strength properties of concrete. This research aims (a) to determine the material engineering properties of banana skin ash (BSA) and concrete containing BSA, (b) to measure the strength enhancement of concrete due to BSA, and (c) to identify optimal application of BSA as supplementary cement materials (SCM) in concrete. The BSA characterization were assessed through X-ray fluorescence (XRF) and Blaine’s air permeability. The workability, compressive strength, and microstructures of concrete containing BSA were analysed using slump test, universal testing machine (UTM) and scanning electron microscope (SEM). A total of 15 oxides and 19 non-oxides elements were identified in BSA with K (43.1%) the highest and Na was not detected. At 20 g of mass, the BSA had a higher bulk density (198.43 ± 0.00 cm3) than ordinary Portland cement (OPC) (36.32 ± 0.00 cm3) indicating availability of large surface area for water absorption. The concrete workability was reduced with the presence of BSA (0% BSA: > 100 mm, 1% BSA: 19 ± 1.0 mm, 2%: 15 ± 0.0 mm, 3% BSA: 10 ± 0.0 mm). The compressive strength increased with the number of curing days. The concrete microstructures were improved; interfacial transition zones (ITZ) decreased with an increase of BSA. The optimal percentage of BSA obtained was at 1.25%. The established model showed significant model terms (Sum of Squares = 260.60, F value = 69.84) with probability of 0.01% for the F-value to occur due to noise. The established model is useful for application in construction industries.


2007 ◽  
Vol 21 (3) ◽  
pp. 204-208 ◽  
Author(s):  
André Mallmann ◽  
Jane Clei Oliveira Ataíde ◽  
Rosa Amoedo ◽  
Paulo Vicente Rocha ◽  
Letícia Borges Jacques

The purpose of this study was to evaluate the compressive strength of two glass ionomer cements, a conventional one (Vitro Fil® - DFL) and a resin-modified material (Vitro Fil LC® - DFL), using two test specimen dimensions: One with 6 mm in height and 4 mm in diameter and the other with 12 mm in height and 6 mm in diameter, according to the ISO 7489:1986 specification and the ANSI/ADA Specification No. 66 for Dental Glass Ionomer Cement, respectively. Ten specimens were fabricated with each material and for each size, in a total of 40 specimens. They were stored in distilled water for 24 hours and then subjected to a compressive strength test in a universal testing machine (EMIC), at a crosshead speed of 0.5 mm/min. The data were statistically analyzed using the Kruskal-Wallis test (5%). Mean compressive strength values (MPa) were: 54.00 ± 6.6 and 105.10 ± 17.3 for the 12 mm x 6 mm sample using Vitro Fil and Vitro Fil LC, respectively, and 46.00 ± 3.8 and 91.10 ± 8.2 for the 6 mm x 4 mm sample using Vitro Fil and Vitro Fil LC, respectively. The resin-modified glass ionomer cement obtained the best results, irrespective of specimen dimensions. For both glass ionomer materials, the 12 mm x 6 mm matrix led to higher compressive strength results than the 6 mm x 4 mm matrix. A higher variability in results was observed when the glass ionomer cements were used in the larger matrices.


Sign in / Sign up

Export Citation Format

Share Document