Experimental Investigation into Flexural Performance of Reinforced Profiled Steel Decking

2021 ◽  
Vol 879 ◽  
pp. 243-253
Author(s):  
Mohammad Amirulkhairi Zubir ◽  
Fadzil Mat Yahaya

Cold-formed profiled steel decking composite slab is one of the most widely used system of slab after conventional concrete slab for building structure. It is cost effective, straightforwardly designable and readily available in the market for construction. However due to modern architectural desire of large span building, this system weakness that is the requirement of temporary propped support may have an impact toward its cost effectiveness. Generally more propped support are required with the increase of slab span design.This paper present the result of laboratory test on the behavior of reinforced profiled steel decking under loading to increase the span for unpropped composite slabs construction. The load capacity of the steel decks was amplified by reinforcing cold formed C channel on the top flange of steel decks. The experimental program comprises 12 full-scale tests of three length with a set of modification of profiled steel decking using cold formed C channel.The result shown experimental evidence of the role played by the cold formed C channel on altering the cross section properties which supporting the bending capacity of the steel decks. The flexural response of the steel deck was examined using the LVDT instruments to capture the deformation at three points. The finding delivered by the experimental data for the performance of reinforced profiled steel decking are set as the base for the future verification of finite element model.

2014 ◽  
Vol 4 (3) ◽  
Author(s):  
Jan Øverli

AbstractAn experimental program is presented where a slab on ground is subjected to concentrated loading at the centre, the edges and at the corners. Analytical solutions for the ultimate load capacity fit well with the results obtained in the tests. The non-linear behaviour of the slab is captured by performing nonlinear finite element analyses. The soil is modelled as a no-tension bedding and a smeared crack approach is employed for the concrete. Through a parametric study, the finite element model has been used to assess the influence of subgrade stiffness and shrinkage. The results indicate that drying shrinkage can cause severe cracking in slabs on grade.


Author(s):  
Roman Kaplin

A large number of bridges are operated on the roads of Ukraine. The increase in the intensity and speed of traffic leads to qualitative changes in the operating conditions of bridge structures, which is characterized by a sharp increase in the number of cycles under load of bridge elements, and to the development of damage in them. For trouble-free operation and efficient use of bridge structures it is very important to have reliable estimates of the actual load capacity and resource, taking into account the loads, material quality, nature of the structure. The solution of the problem in this statement is possible only on the basis of the theory of reliability. However, its application to specific assessments of durability and reliability of structures is associated with the solution of a set of issues: the identification of patterns of change of various parameters, the accumulation of reliable and easy to calculate statistics on loads and mechanical characteristics of materials, etc. It is necessary to know that the strength of the material (sample) of the structural element and the structure as a whole are completely different things. The article considers a new design of reinforced concrete girder structure, using perforated metal elements and an effective reinforced concrete slab of the carriageway. On its basis, a computational model in the form of a finite-element model built in the SCAD-Office software package is formed. As a result of calculations, the components of the stress-strain state of the structure are obtained. Based on the obtained results, the reliability of the structure was calculatedunder the influence of modern regulatory loads. 


Author(s):  
Dongxu Li ◽  
Brian Uy ◽  
Farhad Aslani ◽  
Chao Hou

Spiral welded stainless tubes are produced by helical welding of a continuous strip of stainless steel. Recently, concrete-filled spiral welded stainless steel tubes have found increasing application in the construction industry due to their ease of fabrication and aesthetic appeal. However, an in-depth understanding of the behaviour of this type of structure is still needed due to the lack of proper design guidance and insufficient experimental verification. In this paper, the mechanical performance of concrete-filled spiral welded stainless steel tubes will be numerically investigated with a commercial finite element software package, through which an experimental program can be designed properly. Specifically, the proposed finite element models take into account the effects of material and geometric nonlinearities. Moreover, the initial imperfections of stainless steel tubes and the form of helical welding will be appropriately included. Enhancement of the understanding of the analysis results can be achieved by extending results through a series of parametric studies based on the developed finite element model. Thus, the effects of various design parameters will be further evaluated by using the developed finite element model. Furthermore, for the purposes of wide application of such types of structure, the accuracy of the behaviour prediction in terms of ultimate strength based on current design codes will be studied. The authors herein compared the load capacity between the finite element analysis results and the existing codes of practice.


2020 ◽  
Vol 10 (11) ◽  
pp. 3855 ◽  
Author(s):  
Ehsan Taheri ◽  
Ahmad Firouzianhaji ◽  
Peyman Mehrabi ◽  
Bahador Vosough Hosseini ◽  
Bijan Samali

Perforated cold-formed steel (CFS) beams subjected to different bending scenarios should be able to deal with different buckling modes. There is almost no simple way to address this significant concern. This paper investigates the bending capacity and flexural behavior of a novel-designed system using bolt and nut reinforcing system through both experimental and numerical approaches. For the experiential program, a total of eighteen specimens of three types were manufactured: a non-reinforced section, and two sections reinforced along the upright length at 200 mm and 300 mm pitches. Then, monotonic loading was applied to both the minor and major axes of the specimens. The finite element models were also generated and proved the accuracy of the test results. Using the proposed reinforcing system the flexural capacity of the upright sections was improved around either the major axis or minor axis. The 200 mm reinforcement type provided the best performance of the three types. The proposed reinforcing pattern enhanced flexural behavior and constrained irregular buckling and deformation. Thus, the proposed reinforcements can be a very useful and cost-effective method for strengthening all open CFS sections under flexural loading, considering the trade-off between flexural performance and the cost of using the method.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 507
Author(s):  
Nameer A. Alwash ◽  
Fatimah H. Naser Al-Mamoori

The present study includes an experimental investigation of the behavior of square reinforced concrete slabs. These slabs are with and without edge beams under uniformly distributed load with corner supports using two types of self compacting concrete (SCC), the first type of SCC incorporated limestone filler and the other was without filler, the results obtained are compared with those obtained from conventional concrete (CC).The experimental program consists of testing nine square slab samples. Three of these slab samples are flat in shape with panel dimensions of 1050×1050×50 mm depth. The others three slab samples are of the same outer dimensions with surrounding edge beams of depth to slab thickness equal 100/50 and 100 mm width. The last three slab samples are similar to the former slab-beam systems but with increasing the depth of edge beams by 50%.In general, for a specified flat plate panel, the ultimate load carrying capacity can be increased, if the panel is restricted by four surrounding beams. The slab-beam samples with surrounding beams of depth to slab thickness equal to 3 showed greater ultimate load capacity by about 79.37%, 52% and 97.82% when compared with the corresponding flat slabs samples produced using CC, SCC with and without filler, respectively.  


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Lisheng Luo ◽  
Xiaofeng Zhang

This paper presents an experimental and analytical study on the flexural response of a steel-concrete composite truss beam. This integrated unit consists of a triangular steel truss, a concrete slab on it, and stud connectors. Three simply supported composite trusses with different configurations of shear connection (η) were evaluated via three-point bending tests. The effects of the shear connectors’ configuration on the flexural response (i.e., load-deflection, load-slippage, and load-strain curves) of the composite trusses were examined. The commercial finite-element (FE) software ANSYS was employed to conduct numerical simulations. An FE model was developed for the composite truss and was validated using experimental results. A parametric study was performed to investigate the effect of the shear connectors’ configuration on the flexural response of the composite trusses. If η < 1, the bending capacity increased with η. In contrast, if η ≥ 1, the effect of η on the bending capacity was negligible. Finally, a design method based on the degree of the shear connection was proposed to predict the ultimate capacity of the composite truss, and the predictions agreed well with the experimental results.


Author(s):  
Richard N. White ◽  
Peter Smith

The criteria used for successful rehabilitation of decks of major bridges when it is not feasible to close the bridge to traffic are described. These criteria are described with specific reference to recent work on the trestle spans of the Tappan Zee Bridge over the Hudson River near New York City. The results of an experimental program conducted with a full-scale, 10-m-span, lightweight concrete slab-steel beam composite bridge deck unit intended for later use in rehabilitating the through-truss decks of the bridge are also described. Loading history included 107 cycles of flexural fatigue loading followed by a flexural load capacity test. Measured values of capacity and midspan deflection at this ultimate load level are compared with simplified analytical predictions. A description of the actual rehabilitation process used on the Tappan Zee Bridge deck is also provided.


1992 ◽  
Vol 19 (5) ◽  
pp. 767-780 ◽  
Author(s):  
Charles Albert ◽  
Hesham S. Essa ◽  
D. J. Laurie Kennedy

The behaviour of cantilever-suspended span systems is influenced by the type of loading and the presence of flange restraint. An experimental program consisting of 33 full-scale tests was undertaken to examine the stability of beams in a single overhang configuration. The results indicate that torsional flange restraint significantly enhances the buckling resistance and is particularly effective when combined with a web stiffener. Lateral bracing of the bottom flange at column supports is of considerable importance in maintaining stability. Simulating the proper boundary conditions is essential, since test specimens are very sensitive to unwanted restraints and can buckle in a higher energy mode.A finite element model was developed that takes into account inelastic material behaviour, residual stresses and cross-sectional distortions. The predicted buckling capacities are in good agreement with experimental results. Key words: cantilever-suspended span, steel beams, distortional buckling, flange restraint, inelastic behaviour.


2018 ◽  
Vol 15 (1) ◽  
pp. 15
Author(s):  
AMIR SYAFIQ SAMSUDIN ◽  
MOHD HISBANY MOHD HASHIM ◽  
SITI HAWA HAMZAH ◽  
AFIDAH ABU BAKAR

Nowadays, demands in the application of fibre in concrete increase gradually as an engineering material. Rapid cost increment of material causes the increase in demand of new technology that provides safe, efficient and economical design for the present and future application. The introduction of ribbed slab reduces concrete materials and thus the cost, but the strength of the structure also reduces due to the reducing of material. Steel fibre reinforced concrete (SFRC) has the ability to maintain a part of its tensile strength prior to crack in order to resist more loading compared to conventional concrete. Meanwhile, the ribbed slab can help in material reduction. This research investigated on the bending strength of 2-ribbed and 3-ribbed concrete slab with steel fibre reinforcement under static loading with a span of 1500 mm and 1000 mm x 75 mm in cross section. An amount of 40 kg/m steel fibre of all total concrete volume was used as reinforcement instead of conventional bars with concrete grade 30 N/mm2. The slab was tested under three-point bending. Load versus deflection curve was plotted to illustrate the result and to compare the deflection between control and ribbed slab. This research shows that SFRC Ribbed Slab capable to withstand the same amount of load as normal slab structure, although the concrete volume reduces up to 20%.


2020 ◽  
Vol 38 (5A) ◽  
pp. 669-680
Author(s):  
Ghazwan K. Mohammed ◽  
Kaiss F. Sarsam ◽  
Ikbal N. Gorgis

The study deals with the effect of using Slurry infiltrated fiber concrete (SIFCON) with the reinforced concrete beams to explore its enhancement to the flexural capacity. The experimental work consists of the casting of six beams, two beams were fully cast by conventional concrete (CC) and SIFCON, as references. While the remaining was made by contributing a layer of SIFCON diverse in-depth and position, towards complete the overall depths of the built-up beam with conventional concrete CC. Also, an investigation was done through the control specimens testing about the mechanical properties of SIFCON. The results showed a stiffer behavior with a significant increase in load-carrying capacity when SIFCON used in tension zones. Otherwise high ductility and energy dissipation appeared when SIFCON placed in compression zones with a slight increment in ultimate load. The high volumetric ratio of steel fibers enabled SIFCON to magnificent tensile properties.


Sign in / Sign up

Export Citation Format

Share Document