Study on the Inner-Lined Layers Bonding Strength at Different Temperatures of the Ceramic-Lined Tubing Prepared by the Centrifugal-SHS Method

2021 ◽  
Vol 1026 ◽  
pp. 122-128
Author(s):  
Shou Ze Wang ◽  
Shi Cheng Wei ◽  
Yi Liang ◽  
Bin Shi Xu ◽  
Yong Li Yang ◽  
...  

The inner-lined layers bonding strength of the ceramic-lined tubing was measured from 25°C to 600°C. The macroscopic structure and microscopic characteristics of the slippage surface of the ceramic-lined tubing were observed using optical microscopy and scanning electron microscopy. Combined with finite element analysis of the residual stress distribution at different temperatures, the shear failure model of the ceramic-lined tubing at different temperatures was given. The mechanical bonding force at the C-A (ceramic layer-alloy layer) interface is greater than the metallurgical bonding force at the A-T (alloy layer-base tubing) interface at low temperature, and the mechanical bonding force at the C-A interface is less than the metallurgical bonding force at the A-T interface at high temperature. The transition temperature is about 200 °C.

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1721
Author(s):  
Mario Mora ◽  
Hippolyte Amaveda ◽  
Luis Porta-Velilla ◽  
Germán F. de la Fuente ◽  
Elena Martínez ◽  
...  

The objective of this work is the enhancement of metal-to-metal bonding to provide high thermal conductivity together with electrical insulation, to be used as heat sinks at room and cryogenic temperatures. High thermal conductive metal (copper) and epoxy resin (Stycast 2850FT) were used in this study, with the latter also providing the required electrical insulation. The copper surface was irradiated with laser to induce micro- and nano-patterned structures that result in an improvement of the adhesion between the epoxy and the copper. Thus, copper-to-copper bonding strength was characterized by means of mechanical tensile shear tests. The effect of the laser processing on the thermal conductivity properties of the Cu/epoxy/Cu joint at different temperatures, from 10 to 300 K, is also reported. Using adequate laser parameters, it is possible to obtain high bonding strength values limited by cohesive epoxy fracture, together with good thermal conductivity at ambient and cryogenic temperatures.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Kai Wei ◽  
Yiwei Chen ◽  
Maojun Li ◽  
Xujing Yang

Carbon fiber-reinforced plastics- (CFRP-) steel single lap joints with regard to tensile loading with two levels of adhesives and four levels of overlap lengths were experimentally analyzed and numerically simulated. Both joint strength and failure mechanism were found to be highly dependent on adhesive type and overlap length. Joints with 7779 structural adhesive were more ductile and produced about 2-3 kN higher failure load than MA830 structural adhesive. Failure load with the two adhesives increased about 147 N and 176 N, respectively, with increasing 1 mm of the overlap length. Cohesion failure was observed in both types of adhesive joints. As the overlap length increased, interface failure appeared solely on the edge of the overlap in 7779 adhesive joints. Finite element analysis (FEA) results revealed that peel and shear stress distributions were nonuniform, which were less severe as overlap length increased. Severe stress concentration was observed on the overlap edge, and shear failure of the adhesive was the main reason for the adhesive failure.


2011 ◽  
Vol 71-78 ◽  
pp. 1057-1061 ◽  
Author(s):  
Ke Fang Yin ◽  
Yang Han ◽  
Yi Liu

With the centrally pulling-out test, the bond strength of reinforced concrete is measured with different temperatures and different cooling ways after high temperature; and the ultimate bond strength and slip of reinforced and concrete under different conditions are analyzed. The results show that the bonding strength declines gradually with the increase of temperature, and the ultimate slippage also decreases gradually.


Author(s):  
Geoffrey Garcia ◽  
Kody Wakumoto ◽  
Joseph Brown

Abstract Next–generation interconnects utilizing mechanically interlocking structures enable permanent and reworkable joints between microelectronic devices. Mechanical metamaterials, specifically dry adhesives, are an active area of research which allows for the joining of objects without traditional fasteners or adhesives, and in the case of chip integration, without solder. This paper focuses on reworkable joints that enable chips to be removed from their substrates to support reusable device prototyping and packaging, creating the possibility for eventual pick-and-place mechanical bonding of chips with no additional bonding steps required. Analytical models are presented and are verified through Finite Element Analysis (FEA) assuming pure elastic behavior. Sliding contact conditions in FEA simplify consideration of several design variations but contribute ~10% uncertainty relative to experiment, analysis, and point-loaded FEA. Two designs are presented; arrays of flat cantilevers have a bond strength of 6.3 kPa, and non-flat cantilevers have a strength of 29 kPa. Interlocking designs present self-aligning in-plane forces that emerge from translational perturbation from perfect alignment. Stresses exceeding the material yield stress during adhesion operations present a greater concern for repeatable operation of compliant interlocking joints and will require further study quantifying and accommodating plastic deformation. Designs joining a rigid array with a complementary compliant cantilever array preserve the condition of reworkability for the surface presenting the rigid array. Eventual realization of interconnect technology based on this study will provide a great improvement of functionality and adaptability in heterogeneous integration and microdevice packaging.


2003 ◽  
Vol 765 ◽  
Author(s):  
M.M. Rahman ◽  
T. Tambo ◽  
C. Tatsuyama

AbstractIn the present experiment, we have grown 2500-Å thick Si0.75Ge0.25 alloy layers on Si(001) substrate by MBE process using a short-period (Si14/Si0.75Ge0.25)20 superlattice (SL) as buffer layers. In the SL layers, first a layer of 14 monolayers (MLs) of Si (thickness about 20Å) then a thin layer of Si0.75Ge0.25 (thickness 5-6Å) were grown. This Si/(Si0.75Ge0.25) bilayers were repeated for 20 times. The buffer layers were grown at different temperatures from 300-400°C and the alloy layers were then grown at 500°C on the buffer layers. The alloy layer showed low residual strain (about -0.16%) and smooth surface (rms roughness ~15Å) with 300°C grown SL buffer. Low temperature growth of Si in SL layer introduces point defects and low temperature growth of Si1-xGex in SL layer reduces the Ge segregation length, which leads to strained SL layer formation. Strained layers are capable to make barrier for the propagation of threading dislocations and point defect sites can trap the dislocations.


2004 ◽  
Vol 03 (06) ◽  
pp. 829-837
Author(s):  
SOON-JONG JEONG ◽  
JUNG-HYUK KOH ◽  
DONG-YOON LEE ◽  
JAE-SEOK LEE ◽  
MUN-SU HA ◽  
...  

This study presents the synthesis of nano-oxide-added Ag/Pd powders and its properties tolerable at temperatures above 1100°C for an electrode material utilized in multilayer ceramic devices. The powders of xAg/yPd powder around core cell TiO 2 were formed in a co-precipitation process of Ag and Pd in nano-oxide-dispersed solution, where Ag and Pd precursors are melted in HNO 3 acid. Reaction between ceramic and electrode layers with nanoparticle oxide powder allows internal stress to reduce and mechanical bonding strength to increase due to anchor effect. The densification of the nano-oxide-added electrode paste followed the TiO 2 solid state diffusion-controlled mechanism upon sintering process. The mechanical bonding strength and electrical conductivity were measured after sintering the electrode-printed sheets. As a result, very high adhesive strength over the piezoelectric ceramics' fracture strength and good electrical conductivity of more than 104/Ωcm could be obtained in the multilayer ferroelectric structure which is a form of stacking ceramics layer and electrode layer containing nanoparticles.


2011 ◽  
Vol 201-203 ◽  
pp. 660-663
Author(s):  
Qing Ruo Xie ◽  
Yi Sun ◽  
Li Wen Zheng ◽  
Hu Qi Wang ◽  
Zhang Fa Tong

A new experimental fluidized bed reactor was investigated and designed which has been widely utilized for fast pyrolysis under different temperatures (T=727–973 K).The stresses of the reactor cylinder are analyzed using finite element method(FEM, ANSYS Inc., U.S.A ) based on the safety assessment, and the cylinder is designed for installing scheme. The result of ANSYS analysis shows that the stress unstable positions are nearby both ends of the cylinder. The results of analysis are shown that the designing stresses are not beyond the allow able ones. So the designing parameters can possess sufficient reliability, and the design scheme can completely satisfy the strength requirement. Certainty of the stress could offered the valuable instruction for the application of the equipment on industrial scale-up.


2011 ◽  
Vol 704-705 ◽  
pp. 1112-1116
Author(s):  
Yu Liang Liu ◽  
Tian Ying Xiong ◽  
Jie Wu

Cold Gas Dynamic Spraying (CGDS) has been developed to fabricate surface coating as a new technique in recent years. In this paper, aluminum bronze particles were sprayed on 45 steel and 316L stainless steel by CGDS, and the coating was sucessfully fabricated on the surface of the steels. The microstructure of the coating and the interface between the coating and the substrate were investigated by scanning electron microscope (SEM), energy dispersive (EDX) and XRD. It was found that the coating was dense and its porosity was low, while the microhardness of the coating was lower than that of the bulk one; Mechanical bonding was the main formation mechanism of the coating, and there was metallurgical bonding too; Diffusion occured at the interface between the coating and substrate; α phase in aluminum bronze particles transformed to β phase after the spray and the transformation was induced by the plastic strain during spraying.


Author(s):  
Liang Li ◽  
Purong Jia ◽  
Wenge Pan

Experimental and numerical investigations were carried out to study the temperature effect on the stiffness, strength, and failure behaviors of carbon/polyimide composite laminates. Both unnotched laminates and open-hole laminates were tested under tension load at three temperatures (room temperature, 200 ℃, and 250 ℃). A three-dimensional finite element analysis was carried out to study the thermomechanical coupling behavior in the notched laminate. The model considers each layer and interface as a single element in the thickness direction so that in-plane stress and interlaminar stress could be analyzed in the model. The stresses around the open-hole changing characteristics with the temperature and tensile loading have been discussed in detail. Failure analysis was carried out to predict the residual strength of the notched laminates at different temperatures. Compared to the experimental data, the numerical results have an excellent agreement.


2021 ◽  
Author(s):  
I.. Ceyhan ◽  
S.. Vasantharajan ◽  
P. V. Suryanarayana ◽  
U. B. Sathuvalli ◽  
A.. Helou ◽  
...  

Abstract Vacuum insulated tubing (VIT) is a specialized tubular designed to minimize heat loss from production or injection fluids to the environment in oil, gas and geothermal wells. VIT strings are used in deepwater wells for flow assurance or to mitigate annular pressure buildup. VIT use requires accurate knowledge of its insulating performance. Although VIT performance can be estimated from analytical tools, such as finite element analysis (FEA), an experimental approach provides a more direct measurement and can be used to validate analytical tools. We have developed a new experimental method to address this need. In this method, one or two VIT joints are placed in an ice-water bath. A precisely measured flow of heated air flows inside the VIT. The temperature change of the flowing air is measured between the inlet and outlet of the VIT test specimen. The insulating performance of the VIT is then calculated from this temperature difference using heat exchanger theory with effectiveness-number of transfer units (&#ξ03B5;-NTU) approach. A proportional-integral-derivative (PID) controller is used to control the air temperature at the VIT inlet by regulating power to the heater. This paper illustrates the data reduction method and uncertainty analysis using sample test data. The method allows for rapid measurement of VIT performance at many different temperatures, with the air flow rate being used to optimize the test sensitivity and to reduce experimental uncertainty. As currently designed, the apparatus is able to test single- and double-joint VITs with effective body conductivities between 0.002-0.1 W/m/°C (0.001-0.06 Btu/hr/ft/°F) and temperatures up to 400°C (750°F); however, the design allows the apparatus to be modified easily for higher or lower conductivities. Although designed for VIT, this method may be applied to other types of tubulars. Currently, there is no widely accepted standard method for experimental testing of VIT performance, and it is hoped that this new method may evolve to an industry standard.


Sign in / Sign up

Export Citation Format

Share Document