The Effect of Temperature Variations on the Optical Properties of Tin Oxide Film with Doping Aluminum, Fluorine and Indium for Semiconductor Electronic Devices

2021 ◽  
Vol 1028 ◽  
pp. 77-83
Author(s):  
Aris Doyan ◽  
Susilawati ◽  
Muhammad Taufik

The manufacture of a thin layer of SnO2: (Al + F + In) was carried out by using the sol-gel spin coating method on a glass substrate with various temperatures (25, 50, 100, 150, and 200 °C).The purpose of this study is to determine the optical properties of thin layers which include transmittance, absorbance, band gap energy and activation energy. The optical properties of the coating were characterized using a UV-Vis spectrophotometer with a wavelength of 200-1100 nm. The results showed that the absorbance value increased with increasing temperature at a wavelength of 300 nm. The absorbance values ​​obtained for temperature variations were in the percentages of 95: 5% and 75: 25%, respectively 3.46-4.50 and 3.96-5.76. The transmittance value obtained increased, namely 73.00-86.30% and 74.20-99.30%. In addition, the energy band gap decreased from 3.60-3.41 eV and 3.57-3.31 eV for direct allowed, while 3.69-3.58 eV and 3.65-3.54 eV for indirect allowed. Activation energy decreased from 2.00-1.18 eV and 1.60-1.12 eV. In general, the absorbance and transmittance values ​​increase with increasing ripening temperature and the addition of doping aluminum, fluorine, and indium, while the bandgap energy and activation energy values ​​obtained decrease with increasing ripening temperature and increasing the doping percentage of aluminum, fluorine, and indium. The decrease in the value of the bandgap energy and the activation energy can make it easier for electrons to move from the valence band to the conduction band so that the material is slightly conductive and acts as a semiconductor.

Author(s):  
Allwin Sudhakaran ◽  
◽  
Ashwin Sudhakaran ◽  
E. Siva Senthil ◽  
◽  
...  

In this novel work, we have studied the optical properties of CuBaM-CZFO nanocomposites. (Cu0.5Ba0.5Fe12O19)1-x/ (Co0.6Zn0.4 Fe2O4) x [where x=0.1,0.2] nanocomposites were synthesized individually by sol-gel citrate method and then made into nanocomposites by physical mixing technique. Further characterization over their structural, morphological and optical properties were carried out in detail. With the help of UV analysis, the optical properties such as, the band gap energy was discovered which is found using Tauc’s plot. The bandgap energy is 2.6503eV for CuBaM-CZFO 90-10 which is lesser than CuBaM-CZFO 80-20 (2.8456eV). The structural, morphological and optical properties of novel CuBaM-CZFO nanocomposite are reported and compared with, both among themselves and from the literature review.


2015 ◽  
Vol 1131 ◽  
pp. 237-241 ◽  
Author(s):  
Akkarat Wongkaew ◽  
Chanida Soontornkallapaki ◽  
Naritsara Amhae ◽  
Wichet Lamai

This work aims to study the effect of ZnO containing in TiO2/SiO2 film on the superhydrophilic property after exposed to different types of light. The metal solutions were prepared by sol-gel technique and the film was deposited on glass slides by dip coating method. The parameter studied was the amount of ZnO in the TiO2/SiO2 film. The contents of ZnO were 5-20% weight (increased by 5%). The amount of TiO2 was constant at 30% weight. The obtained films were analyzed for their roughness. The results indicated that film roughness changed according to the ZnO contents. With 5%ZnO in the thin film, the roughness was 0.726 nm while 20%ZnO obtained the roughness of 2.128 nm. UV-Vis spectrophotometer was used for measuring of transmittance of films. At wavelength of 550 nm, the transmittances of each film were greater than 90%. Band gap energy of each film was calculated from the transmittance data. It was found that the average band gap energy of the films was 2.47 eV. Then, the films contained various amount of ZnO were grouped into 2 sets. The first set was exposed to visible light while the other set was exposed to UV. The duration of exposure was 5 hr. Both sets of films after exposed to any light were kept in a black box controlled relative humidity of 85%. Each film was measured contact angle every day. It was found that the 30%TiO2/5%Zn/SiO2 film exposed to visible light showed the best superhydrophilic property. The contact angle was about 0-5° within 3 days. This may due to the reduction of band gap energy in the presence of ZnO in TiO2/SiO2 films to 2.41 eV and the roughness of the film.


2020 ◽  
pp. 2050044
Author(s):  
SAHAR MORADI ◽  
HASSAN SEDGHI

Nanostructured Fe:SnO2 thin films were deposited on glass substrates through sol–gel spin coating method. Films were synthesized with different iron quantities including 0%, 4%, 8% and 12% (wt.%). The effects of Fe concentration on optical properties of films were investigated by spectroscopic ellipsometry (SE) technique. SE measured ([Formula: see text]) parameters for films in the wavelength range between 300[Formula: see text]nm to 800[Formula: see text]nm. Optical properties including the refractive index, extinction coefficient, transmittance, dielectric constants and optical conductivity were determined by fitting the SE measured ([Formula: see text]) parameters and data obtained from the optical model-based analysis. Results showed that the transmittance values increase by increment of Fe concentration from 0% to 12%. The bandgap energy ([Formula: see text] of prepared thin films was also calculated. [Formula: see text] values were between 3.44 and 3.58[Formula: see text]eV. Dispersion parameters including the high frequency dielectric constant ([Formula: see text] and the ratio of free carrier concentration to effective mass (N/m[Formula: see text] were then obtained for the prepared films.


2021 ◽  
Vol 10 (2) ◽  
pp. 241-250
Author(s):  
Budi Astuti ◽  
Putut Marwoto ◽  
Azizah Zhafirah ◽  
Nur Hamid ◽  
Didik Aryanto ◽  
...  

This research was conducted to analyze the Mg doping concentration effect on the structure, morphology, and optical properties of ZnO thin film prepared using the sol gel spin coating method. The Mg concentration was varied in the mole fraction of 1%, 3%, and 5%. Firstly, ZnO: Mg solution was dropped on a substrate and grown with a rotating speed of 3000 rpm and then annealed at 500 °C for 2 hours. The characterization of thin films' structure, morphology, and optical properties was done using XRD, FESEM, EDX, and UV-VIS spectrophotometer. XRD result showed a polycrystalline structure with three dominant peaks of (100), (002), and (101) plane, hexagonal wurtzite structures. Furthermore, the crystallite size was increased with the increase of Mg doping. FESEM results showed that the 5% ZnO: Mg thin film was the densest and least void from other films. In addition, the results of UV-Vis-NIR analysis showed the highest absorption value at a wavelength of 360-370 nm. The bandgap energy increased at 1% and 3% Mg doping samples but decreased by 5% Mg doping comes from the excess of oxygen in thin film with 5% Mg doping.


2012 ◽  
Vol 19 (02) ◽  
pp. 1250018
Author(s):  
V. LAKSHMIPRIYA ◽  
B. NATARAJAN ◽  
N. JEYAKUMARAN ◽  
N. PRITHIVIKUMARAN

ZnO thin films were prepared onto the glass substrates by the sol–gel spin coating method for various Zn concentrations and at different spin rates. The influence of concentration of zinc and spin rate on the structural and optical properties of the ZnO thin films were investigated. It was observed that the zinc concentration and spin rate influence the grain size and morphology of the ZnO thin films. The optical band gap energy was found to increase with decrease of Zn concentration and increase in spin speed. The photoluminescence peaks show green radiation at ~485 nm. It was also observed that the enrichment of zinc and variation in spin speed influence the intensity of luminescence peaks.


2013 ◽  
Vol 667 ◽  
pp. 63-67 ◽  
Author(s):  
N.A.A. Aziz ◽  
M.F. Achoi ◽  
Saifollah Abdullah ◽  
Mohamad Rusop Mahmood

Preparation of nanohybrid PMMA/TiO2 hybrid was reported by using mixture sol-gel spin coating method. This studied involve modification band gap of TiO2 at different molar concentration of TTiB precursor. AFM image show TiO2 particles encapsulated with PMMA matrix. From UV-Vis spectroscope, we have found as increase of TTiB precursor molar concentration, optical band gap is 3.34 eV, increase in UV-range from 3.25 eV. This study suggested for improvement of optical band gap TiO2 coated glass.


2020 ◽  
Vol 92 (2) ◽  
pp. 20402
Author(s):  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

Nanocomposite (NCP) films of polycarbonate-polybutylene terephthalate (PC-PBT) blend as a host material to Cr2O3 and CdS nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Samples from the PC-PBT/Cr2O3 and PC-PBT/CdS NCPs were irradiated using different doses (20–110 kGy) of γ radiation. The induced modifications in the optical properties of the γ irradiated NCPs have been studied as a function of γ dose using UV Vis spectroscopy and CIE color difference method. Optical dielectric loss and Tauc's model were used to estimate the optical band gaps of the NCP films and to identify the types of electronic transition. The value of optical band gap energy of PC-PBT/Cr2O3 NCP was reduced from 3.23 to 3.06 upon γ irradiation up to 110 kGy, while it decreased from 4.26 to 4.14 eV for PC-PBT/CdS NCP, indicating the growth of disordered phase in both NCPs. This was accompanied by a rise in the refractive index for both the PC-PBT/Cr2O3 and PC-PBT/CdS NCP films, leading to an enhancement in their isotropic nature. The Cr2O3 NPs were found to be more effective in changing the band gap energy and refractive index due to the presence of excess oxygen atoms that help with the oxygen atoms of the carbonyl group in increasing the chance of covalent bonds formation between the NPs and the PC-PBT blend. Moreover, the color intensity, ΔE has been computed; results show that both the two synthesized NCPs have a response to color alteration by γ irradiation, but the PC-PBT/Cr2O3 has a more response since the values of ΔE achieved a significant color difference >5 which is an acceptable match in commercial reproduction on printing presses. According to the resulting enhancement in the optical characteristics of the developed NCPs, they can be a suitable candidate as activate materials in optoelectronic devices, or shielding sheets for solar cells.


Author(s):  
Atefeh Nazari Setayesh ◽  
Hassan Sedghi

Background: In this work, CdS thin films were synthesized by sol-gel method (spin coating technique) on glass substrates to investigate the optical behavior of the film. Methods: Different substrate spin coating speeds of 2400, 3000, 3600 rpm and different Ni dopant concentrations of 0 wt.%, 2.5 wt.%, 5 wt.%) were investigated. The optical properties of thin films such as refraction index, extinction coefficient, dielectric constant and optical band gap energy of the layers were discussed using spectroscopic ellipsometry method in the wavelength range of 300 to 900 nm. Results: It can be deduced that substrate rotation speed and dopant concentration has influenced the optical properties of thin films. By decreasing rotation speed of the substrate which results in films with more thicknesses, more optical interferences were appeared in the results. Conclusion: The samples doped with Ni comparing to pure ones have had more optical band gap energy.


2018 ◽  
Vol 32 (09) ◽  
pp. 1850076 ◽  
Author(s):  
Irfan Ullah ◽  
Shaukat Ali Khattak ◽  
Tanveer Ahmad ◽  
Saman ◽  
Nayab Ali Ludhi

The titanium dioxide (TiO2) is synthesized by sol–gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.


Sign in / Sign up

Export Citation Format

Share Document