Mechanical Properties and Microstructure of A356-T6 Aluminum Alloy Wheel Hub Based on Casting-Spinning Process

2021 ◽  
Vol 1036 ◽  
pp. 3-10
Author(s):  
Zhang Feng Wang ◽  
Chi Xiang Ou ◽  
Meng Jun Wang ◽  
Bai Chen Chen ◽  
Gang Xian Fan

The mechanical properties and microstructure of the A356-T6 wheel hub based on low pressure die casting-hot flow forming process were analyzed by means of optical microscopy (OM), scanning electron microscopy (SEM) and tensile tests. Results showed that the size of the eutectic region and the morphology of the Si phase were the main factors affecting the mechanical properties and fracture morphology of the wheel hub. There was a uniform distribution of eutectic area and fine Si phase morphology in the microstructure of the upper rim and lower rim, moreover, the ultimate tensile strength and yield strength of the upper rim reached 282.4MPa and 185.1MPa, respectively. The fractures were mainly composed of fine quasi-cleavage platform and dimple. The microstructure of the rim showed a long strip along the deformation direction and the eutectic structure and Si particles were uniformly distributed. Irregular polygonal eutectic regions and coarse rod-like Si particles were accumulating in the spoke, causing a serious decrease in mechanical properties, especially in the spoke center and spoke R angle.

2000 ◽  
Vol 9 (3) ◽  
pp. 096369350000900 ◽  
Author(s):  
J.L. Billoet ◽  
A. Cherouat

The present study concerns the modelling of the behaviour of pre-impregnated woven fabric during the forming process. The mechanical approach is based on a mesostructural model. It allows us to take into account the mechanical properties of fibres and resin and the various dominating mode of deformation of woven fabrics during the forming process. Shear and tensile tests of composite fabric specimens are proposed and compared with the experimental results in order to demonstrate the efficiency of our approach. Different numerical simulations and experiments of shaping process have been carried out in order to validate the proposed computational formulation. The various forming parameters examined have included the initial shape of fabric, fibre orientations and viscosity of resin.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 884 ◽  
Author(s):  
Seyed Vahid Sajadifar ◽  
Emad Scharifi ◽  
Ursula Weidig ◽  
Kurt Steinhoff ◽  
Thomas Niendorf

This study focuses on the high temperature characteristics of thermo-mechanically processed AA7075 alloy. An integrated die forming process that combines solution heat treatment and hot forming at different temperatures was employed to process the AA7075 alloy. Low die temperature resulted in the fabrication of parts with higher strength, similar to that of T6 condition, while forming this alloy in the hot die led to the fabrication of more ductile parts. Isothermal uniaxial tensile tests in the temperature range of 200–400 °C and at strain rates ranging from 0.001–0.1 s−1 were performed on the as-received material, and on both the solution heat-treated and the thermo-mechanically processed parts to explore the impacts of deformation parameters on the mechanical behavior at elevated temperatures. Flow stress levels of AA7075 alloy in all processing states were shown to be strongly temperature- and strain-rate dependent. Results imply that thermo-mechanical parameters are very influential on the mechanical properties of the AA7075 alloy formed at elevated temperatures. Microstructural studies were conducted by utilizing optical microscopy and a scanning electron microscope to reveal the dominant softening mechanism and the level of grain growth at elevated temperatures.


2008 ◽  
Vol 141-143 ◽  
pp. 283-288 ◽  
Author(s):  
Manel Campillo ◽  
Maite T. Baile ◽  
Sergi Menargues ◽  
Antonio Forn

EN AC-46500 aluminium components are formed by Semi-Solid Rheocasting (SSR) in an industrial plant using a 700 tons high pressure machine. The dies wear was designed by the PLCO model of the ProCast simulation software. The components have had a good structural integrity and the mechanical properties after T6 treatment have been equivalent to that obtained by the same alloy by die cast. The present work describes the SSR forming process, the resulting microstructure as well as the optimization of the ageing heat treatment by hardness evolution. The results of the tensile tests make these clear.


2006 ◽  
Vol 980 ◽  
Author(s):  
Hongbin Bei ◽  
E. P. George

AbstractFe-Co-V-C quaternary alloys were drop cast and directionally solidified to obtain an in situ composite. It is found that the fully eutectic structure occurs at a composition of Fe - 40.5Co -10.4V- 8.6C (at. %) in a drop-cast alloy. Directional solidification of this composition in a high-temperature optical floating zone furnace produces a well-aligned microstructure, consisting of sub-micron VC fibers (~19% by volume) embedded in a FeCo-5V solid solution matrix containing ~ 1% C. The temperature dependencies of mechanical properties of this composite were examined by tensile tests and the composite was found to have higher yield strength and lower ductility than the matrix.


2012 ◽  
Vol 472-475 ◽  
pp. 1406-1417
Author(s):  
Zhen Zhong Fan ◽  
Yan Cai Xiong ◽  
Yong Jiang Zhou

This paper describes the cast structure study of A357 aluminum alloy stress frame casting under consecutive solidification and simultaneous solidification by test and numerical simulation methods, with the conclusions of tensile tests by using of SEM and EDS analysis, the mechanical properties and fracture morphology were observed both under the cast and T6 heat-treatment state. Intergranular fracture cracks were observed to be the main failure mode in the casting state condition, cracks originated from the tissue defects and continued to proliferate until the tensile specimens were ruptured. Simultaneous solidification can decrease the casting shrinkage and micro-cavity and improve the mechanical properties of the castings. Dimple fracture was the dominated failure mode after T6 heat treatment state, the distribution of some intergranular cracks staggered with dimple fracture can surveyed under the fractography analysis. The superiority of simultaneous solidification was demonstrated by the numerical simulation of China casting CAE.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3969
Author(s):  
Peikang Bai ◽  
Pengcheng Huo ◽  
Taotao Kang ◽  
Zhanyong Zhao ◽  
Wenbo Du ◽  
...  

AlSi10Mg alloy branches were fabricated by selective laser melting (SLM), and the branches were employed to evaluate their effect on the mechanical properties. When the porous branches were compressed along its building direction, the tree column structures-type AlSi10Mg alloy branches collapsed twice, which had typical elastic, shear, collapse, and densification stages. The compressive stress concentration at the interface between the support and the porous body caused the fracture of the tree column structures-type AlSi10Mg alloy branches. The fracture surface indicated that the prepared tree-type branches were distributed with different shapes of dimples, and the Si content inside the dimples was higher than that of the edge. The morphology of the Al-Si eutectic structure formed by SLM and the stress concentration at the Al/Al-Si-eutectic interface affected the fracture morphology and Si content distribution.


Author(s):  
Un Bong Baek ◽  
Hae Moon Lee ◽  
Seung Wook Baek ◽  
Seung Hoon Nahm

The tensile properties of API 5L X70 pipeline steels have been measured in a high-pressure (10 MPa) hydrogen gas environment. Significant decreases in elongation at failure and reduction of area were observed when testing in hydrogen as compared with air, and those changes were accompanied by noticeable changes in fracture morphology. The present paper exposes the changes in mechanical properties of a grade API 5L X70 steel through numerous mechanical tests, i.e. tensile tests, notch tensile tests, fracture toughness and fatigue crack growth measurements, performed either in atmosphere or in 10 MPa pressure of hydrogen gas.


2016 ◽  
Vol 35 (10) ◽  
pp. 989-998 ◽  
Author(s):  
B.B. Liu ◽  
J.Q Han ◽  
R. Zhao ◽  
W. Liu ◽  
M. Wan

AbstractChange in mechanical parts from macro-size to micro-size has become a trend in the metal- and alloy-forming process, with an increasing demand on micro-parts in the last decades. The material mechanical behaviors of micro-size parts are quite different from the conventional ones of macro-size parts due to size effect. It is necessary to further investigate the effects of grain size on material mechanisms in micro-scales, especially fracture behaviors. The fracture behaviors of Inconel 718 sheet with the thickness of 300 μm are studied by uniaxial tensile tests in different grain sizes ranging from 18 to 130 μm. The results show that fracture stress and strain decrease with the increase of grain size. A critical value in the specimen thickness (t) to grain size (d) ratio divides the strength levels into separate stages on the basis of an increase of the inverse of grain size. In addition, the grain size-dependent fracture morphology is changed in the number of dimples and micro-voids decreasing on the fracture surfaces and the sizes of micro-voids changing larger with the increase of grain size.


2014 ◽  
Vol 988 ◽  
pp. 156-160
Author(s):  
Hong Wei Liu ◽  
Feng Wang ◽  
Bai Qing Xiong ◽  
Yong An Zhang ◽  
Zhi Hui Li ◽  
...  

The microstructure and mechanical properties of the Al-2.24Cu-1.42Mg-0.9Fe-0.9Ni alloy were studied using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and tensile tests. The results indicate that the microstructures of the as cast alloy involve α-Al matrix, Al/Al2CuMg eutectic structure, Al7Cu2Fe, Al7Cu4Ni and Al9FeNi compounds. The tensile test results indicate that the alloy at elevated temperature (200°C) displays superior tensile strength due to the presence of the thermally stable Al7Cu2Fe, Al7Cu4Ni and Al9FeNi compounds.


2015 ◽  
Vol 816 ◽  
pp. 381-386
Author(s):  
H. Yan ◽  
R.S. Chen ◽  
E.H. Han

Mg-2.0Zn-xGd sheets with non-basal texture were fabricated by common rolling process, which showed excellent ductility and formability at room temperature. In this paper, tensile tests were carried out at moderate temperature along the rolling direction and transverse direction to evaluate the influences of tensile temperature on mechanical properties and formability of the sheet. The microstructural evolution during tensile deformation was also investigated to analysis deformation mechanisms. The results showed that the elongation of the sheets increased from 57% at 373K to 253% at 573°C along the rolling direction, while the yield strength decreased with the increase of tensile temperature. The microstructure observation indicated that twining was one of the deformation modes and no dynamic recrytallization took place during deformation at 373K. With temperature increasing up to 473K, dynamic recrystallization took place and led to finer microstructure. This suggests that the formability of the Mg-Zn-Gd sheets with high ductility at room temperature could be further improved by increasing temperature up to 473K, which could refine the microstructure leading to higher strength during second forming process.


Sign in / Sign up

Export Citation Format

Share Document