Microstructure and Mechanical Properties of an Al-Cu-Mg-Fe-Ni Alloy

2014 ◽  
Vol 988 ◽  
pp. 156-160
Author(s):  
Hong Wei Liu ◽  
Feng Wang ◽  
Bai Qing Xiong ◽  
Yong An Zhang ◽  
Zhi Hui Li ◽  
...  

The microstructure and mechanical properties of the Al-2.24Cu-1.42Mg-0.9Fe-0.9Ni alloy were studied using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and tensile tests. The results indicate that the microstructures of the as cast alloy involve α-Al matrix, Al/Al2CuMg eutectic structure, Al7Cu2Fe, Al7Cu4Ni and Al9FeNi compounds. The tensile test results indicate that the alloy at elevated temperature (200°C) displays superior tensile strength due to the presence of the thermally stable Al7Cu2Fe, Al7Cu4Ni and Al9FeNi compounds.

2014 ◽  
Vol 543-547 ◽  
pp. 3733-3736
Author(s):  
Rong Hua Zhang ◽  
Biao Wu ◽  
Xiao Ping Zheng

In this study, 8009 heat resistant aluminum alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the alloy were studied using transmission electron microscopy, X-ray diffraction, and tensile tests. The secondary phases in the microstructure of the spray-deposited alloy were examined. The tensile test results indicate that the spray-deposited 8009 alloy both at room and elevated temperature displays superior tensile strength due to the presence of the thermally stable Al12(Fe,V)3Si particles.


2012 ◽  
Vol 706-709 ◽  
pp. 264-267
Author(s):  
Feng Wang ◽  
Bai Qing Xiong ◽  
Yon Gan Zhang ◽  
Hong Wei Liu ◽  
Zhi Hui Li ◽  
...  

In this study, Zn-30Al-1Cu alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the alloy were studied using optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and tensile tests. It can be seen that the microstructure of spray-deposited Zn-30Al-1Cu alloy is composed of the Zn/Al eutectoids and few compounds. The Zn/Al eutectoids were shown lamellar, particle and Chinese script morphologies. The compound phases in the microstructure of the spray-deposited alloy were examined. The property test results indicate that the spray-deposited Zn-30Al-1Cu alloy displays superior tensile strength.


2017 ◽  
Vol 79 (5-2) ◽  
Author(s):  
Mohd Shukor Salleh ◽  
Mohd Azizul Hikmi Safian ◽  
Mohamad Ridzuan Mohamad Kamal ◽  
Zolkarnain Marjom ◽  
Saifudin Hafiz Yahaya ◽  
...  

Thixoforming is a type of semisolid metal (SSM) processing for forming alloys in the semisolid state to near net-shaped products. In the present study, the effect of a thixoforming process on the microstructure and mechanical properties of Al-6Si-3Cu aluminium alloy was investigated. Melt was poured on a cooling slope at 630oC and the samples were obtained through permanent mold casting. They were thixoformed using a hydraulic press after holding at 571oC for 5min to yield a microstructure predominantly composed of α-Al globules and inter-globular Si particles. As-cast and thixoformed samples were characterized using optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) as well as hardness measurements and tensile tests. The results indicate that the mechanical properties of thixoformed alloy have improved as compared to permanent mold cast alloy. The ultimate tensile strength of as-cast sample was 210 ± 3.5 MPa and increased to 241 ±3.1 MPa in the thixoformed sample while the yield strength of as-cast alloy was 140 ±4.5 MPa and increased to 176±3.3 MPa in the thixoformed sample. The thixoformed alloy also showed an improvement in elongation to fracture as it increased from 2% in as-cast sample to 3.2% in thixoformed alloy. The fracture of as-cast sample showed a cleavage fracture, whereas in the thixoformed alloy, a combination of dimple and cleavage was observed.


2011 ◽  
Vol 704-705 ◽  
pp. 1095-1099
Author(s):  
Peng Liu ◽  
Hao Ran Geng ◽  
Zhen Qing Wang ◽  
Jian Rong Zhu ◽  
Fu Sen Pan ◽  
...  

Effects of AlN addition on the microstructure and mechanical properties of as-cast Mg-Al-Zn magnesium alloy were investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and tensile testing. Five different samples were made with different amounts of AlN(0wt%, 0.12wt%, 0.30wt%, 0.48wt%, 0. 60wt%). The results show that the phases of as-cast alloy are composed of α-Mg,β-Mg17Al12. The addition of AlN suppressed the precipitation of the β-phase. And, with the increase of AlN content, the microstructure of β-phase was changed from the reticulum to fine grains. When AlN content was up to 0.48wt% in the alloy, the β-phase became most uniform distribution. After adding 0.3wt% AlN to Al-Mg-Zn alloy, the average alloy grain size reduced from 102μm to 35μm ,the tensile strength of alloy was the highest. The average tensile strength increased from 139MPa to 169.91MPa, the hardness increased from 77.7HB to 98.4HB, but the elongation changes indistinctively. However, when more amount of AlN was added, the average alloy grain size did not reduce sequentially and increased to 50μm by adding 0.6wt% AlN and the β-phase became a little more. Keywords: Al-Mg-Zn alloy; AlN; β-Mg17Al12; Tensile strength


2016 ◽  
Vol 849 ◽  
pp. 492-496
Author(s):  
Zhi Wei Zhang ◽  
Yong Ji Niu ◽  
Jian Jun Tian ◽  
Ning An ◽  
Yang Gao ◽  
...  

Effect of remelting processes on the microstructure and mechanical properties of as-cast Nimonic 90 superalloy was investigated by OM (optical micrograph), SEM (scanning electron microscopy), EDS (energy-dispersive X-ray) and tensile tests. The results indicated that the microstructure of the as-cast alloy was mainly composed of γ, γ' and carbides which contain Ti and Cr elements. The average grain size of the alloy tends to increase with mould shell temperature ranging from 350°C to 950°C. The strength of the as-cast alloy decreased with the increasing of mold shell temperature, with constant elongation as the mold shell temperature changes.


2014 ◽  
Vol 59 (1) ◽  
pp. 127-131 ◽  
Author(s):  
J. Bogucka

Abstract The influence of bonding temperature on microstructure and mechanical properties of AA5251 alloy sheets have been analyzed in the paper. The alloy was deformed with the method of accumulative roll bonding (ARB) in various temperature conditions i.e. at ambient temperature up to 5th cycle (ε = 4.0) and using pre-heating of sheet packs at 200°C and 300°C up to 10 cycles (ε = 8.0). The deformed material was subjected to structural observations using TEM, measurements of crystallographic texture with the technique of X-ray diffraction and tensile tests. It was established that the temperature of roll-bonding had a significant effect on the structure evolution and the observed changes of mechanical properties. High refinement of microstructure and optimum mechanical properties were obtained for the material processed at lower temperatures, i.e. at ambient temperature and pre-heating at 200°C. Recovery structure processes occurring during deformation were observed in the alloy bonded with pre-heating at 300°C and therefore mechanical properties were lower than for the alloy bonded at lower temperatures.


2013 ◽  
Vol 281 ◽  
pp. 426-429
Author(s):  
Tao Chen ◽  
Hua Wu ◽  
Qing Hui Wang

PVD method is used to deposit (Ti,Al)N coatings on the surface of W6Mo5Cr4V2 steels. The value of bias voltage changes from -100V to -400V. X-ray diffraction (XRD), Scanning electron microscope(SEM) and UNMT-1 were employed to analysis the microstructure and mechanical properties of (Ti,Al)N coatings. The research results showed that the microstructure and mechanical properties of coatings became better when the value of bias voltage was -400V. The size and quantity of particles on coatings both decreased obviously. The adhesion between coatings and substrates increase to 54.6N. The hardness of (Ti,Al)N coatings rise to 39.7N.


2012 ◽  
Vol 463-464 ◽  
pp. 52-57 ◽  
Author(s):  
Shu Qun Chen ◽  
Xuan Pu Dong ◽  
Xiao Qing Xiong ◽  
Rong Ma ◽  
Zi Tian Fan

The effects of Cu addition on microstructure, mechanical properties and damping capacity of Mg-3%Ni based alloy were investigated by using tensile tests, X-ray diffraction, scanning electron microscope and dynamic mechanical analyzer. The results show that Cu addition could reduce the size of -Mg dendrites and a new binary phase Mg2Cu can be identified, which mostly distributes among the inter-dendrites in the form of typical lamellar-like eutectic microstructure and improve the mechanical properties. In low strain amplitude, with the increase of Cu addition, the damping capacities of Cu contained alloys change little, while in high strain range, the internal friction values decrease gradually with the grain refinement and increasing content of eutectic phase.


Author(s):  
Hansong Xue ◽  
Gang Yang ◽  
Di Li ◽  
Zhihui Xing ◽  
Fusheng Pan

AbstractThe effects of Y on microstructure and mechanical properties of as-cast AZ80–2Sn magnesium alloys were investigated by optical microscopy, scanning electron microscopy and X-ray diffraction. Y addition not only changes the as-cast microstructure but also influences the mechanical properties of AZ80–2Sn alloy. Unmodified AZ80–2Sn alloys under casting state show that Mg


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


Sign in / Sign up

Export Citation Format

Share Document