scholarly journals On-Chip Temperature Monitoring of a SiC Current Limiter

2004 ◽  
Vol 457-460 ◽  
pp. 1021-1024 ◽  
Author(s):  
Dominique Tournier ◽  
Phillippe Godignon ◽  
José Millan ◽  
Dominique Planson ◽  
Jean-Pierre Chante ◽  
...  
Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Shijie Deng ◽  
Alan P. Morrison ◽  
Yong Guo ◽  
Chuanxin Teng ◽  
Ming Chen ◽  
...  

The design and implementation of a real-time breakdown voltage and on-chip temperature monitoring system for single photon avalanche diodes (SPADs) is described in this work. In the system, an on-chip shaded (active area of the detector covered by a metal layer) SPAD is used to provide a dark count rate for the breakdown voltage and temperature calculation. A bias circuit was designed to provide a bias voltage scanning for the shaded SPAD. A microcontroller records the pulses from the anode of the shaded SPAD and calculates its real-time dark count rate. An algorithm was developed for the microcontroller to calculate the SPAD’s breakdown voltage and the on-chip temperature in real time. Experimental results show that the system is capable of measuring the SPAD’s breakdown voltage with a mismatch of less than 1.2%. Results also show that the system can provide real-time on-chip temperature monitoring for the range of −10 to 50 °C with errors of less than 1.7 °C. The system proposed can be used for the real-time SPAD’s breakdown voltage and temperature estimation for dual-SPADs or SPAD arrays chip where identical detectors are fabricated on the same chip and one or more dummy SPADs are shaded. With the breakdown voltage and the on-chip temperature monitoring, intelligent control logic can be developed to optimize the performance of the SPAD-based photon counting system by adjusting the parameters such as excess bias voltage and dead-time. This is particularly useful for SPAD photon counting systems used in complex working environments such as the applications in 3D LIDAR imaging for geodesy, geology, geomorphology, forestry, atmospheric physics and autonomous vehicles.


Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1629 ◽  
Author(s):  
Maria Malits ◽  
Igor Brouk ◽  
Yael Nemirovsky

2016 ◽  
Vol 7 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Józef Kuczmaszewski ◽  
Ireneusz Zagórski ◽  
Piotr Zgórniak

Abstract This paper presents an overview of the state of knowledge on temperature measurement in the cutting area during magnesium alloy milling. Additionally, results of own research on chip temperature measurement during dry milling of magnesium alloys are included. Tested magnesium alloys are frequently used for manufacturing elements applied in the aerospace industry. The impact of technological parameters on the maximum chip temperature during milling is also analysed. This study is relevant due to the risk of chip ignition during the machining process.


Author(s):  
Aleš Chvála ◽  
Robert Szobolovszký ◽  
Jaroslav Kováč ◽  
Martin Florovič ◽  
Juraj Marek ◽  
...  

In this paper, several methods suitable for real time on-chip temperature measurements of power AlGaN/GaN based high-electron mobility transistor (HEMT) grown on SiC substrate are presented. The measurement of temperature distribution on HEMT surface using Raman spectroscopy is presented. We have deployed a temperature measurement approach utilizing electrical I-V characteristics of the neighboring Schottky diode under different dissipated power of the transistor heat source. These methods are verified by measurements with micro thermistors. The results show that these methods have a potential for HEMT analysis in thermal management. The features and limitations of the proposed methods are discussed. The thermal parameters of materials used in the device are extracted from temperature distribution in the structure with the support of 3-D device thermal simulation. The thermal analysis of the multifinger power HEMT is performed. The effects of the structure design and fabrication processes from semiconductor layers, metallization, and packaging up to cooling solutions are investigated. The analysis of thermal behavior can help during design and optimization of power HEMT.


Author(s):  
Tim Wegner ◽  
Martin Gag ◽  
Dirk Timmermann

With the progress of deep submicron technology, power consumption and temperature-related issues have become dominant factors for chip design. Therefore, very large-scale integrated systems like Systems-on-Chip (SoCs) are exposed to an increasing thermal stress. On the one hand, this necessitates effective mechanisms for thermal management and task mapping. On the other hand, application of according thermal-aware approaches is accompanied by disturbance of system integrity and degradation of system performance. In this chapter, a method to predict and proactively manage the on-chip temperature distribution of systems based on Networks-on-Chip (NoCs) is proposed. Thereby, traditional reactive approaches for thermal management and task mapping can be replaced. This results in shorter response times for the application of management measures and therefore in a reduction of temperature and thermal imbalances and causes less impairment of system performance. The systematic analysis of simulations conducted for NoC sizes up to 4x4 proves that under certain conditions the proactive approach is able to mitigate the negative impact of thermal management on system performance while still improving the on-chip temperature profile. Similar effects can be observed for proactive thermal-aware task mapping at system runtime allowing for the consideration of prospective thermal conditions during the mapping process.


2021 ◽  
Vol 21 (2) ◽  
pp. 2115-2123
Author(s):  
Jaehoon Jun ◽  
Sangmin Shin ◽  
Minsung Kim ◽  
Yongjoon Ahn ◽  
Suhwan Kim

2011 ◽  
Vol 32 (3) ◽  
pp. 035009
Author(s):  
Chengzhan Li ◽  
Zhijian Chen ◽  
Jiwei Huang ◽  
Yongping Wang ◽  
Chuanhui Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document