IR thermography and FEM simulation analysis of on-chip temperature during thermal-cycling power-metal reliability testing using in situ heated structures

2009 ◽  
Vol 49 (9-11) ◽  
pp. 1132-1136 ◽  
Author(s):  
Helmut Köck ◽  
Vladimir Košel ◽  
Christian Djelassi ◽  
Michael Glavanovics ◽  
Dionyz Pogany
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marc Thelen ◽  
Nicolas Bochud ◽  
Manuel Brinker ◽  
Claire Prada ◽  
Patrick Huber

AbstractNanoporosity in silicon leads to completely new functionalities of this mainstream semiconductor. A difficult to assess mechanics has however significantly limited its application in fields ranging from nanofluidics and biosensorics to drug delivery, energy storage and photonics. Here, we present a study on laser-excited elastic guided waves detected contactless and non-destructively in dry and liquid-infused single-crystalline porous silicon. These experiments reveal that the self-organised formation of 100 billions of parallel nanopores per square centimetre cross section results in a nearly isotropic elasticity perpendicular to the pore axes and an 80% effective stiffness reduction, altogether leading to significant deviations from the cubic anisotropy observed in bulk silicon. Our thorough assessment of the wafer-scale mechanics of nanoporous silicon provides the base for predictive applications in robust on-chip devices and evidences that recent breakthroughs in laser ultrasonics open up entirely new frontiers for in-situ, non-destructive mechanical characterisation of dry and liquid-functionalised porous materials.


Author(s):  
Antonio Di Maio ◽  
Anna Cioce ◽  
Silvia Achilli ◽  
Michel Thépaut ◽  
Corinne Vivès ◽  
...  
Keyword(s):  
On Chip ◽  

Density depended binding and selectivity is studied on glycodendron microarray with defined valency, which were prepared by on-chip synthesis and analysed by in situ MALDI-TOF MS.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 72
Author(s):  
Sergiu Spataru ◽  
Peter Hacke ◽  
Dezso Sera

An in-situ method is proposed for monitoring and estimating the power degradation of mc-Si photovoltaic (PV) modules undergoing thermo-mechanical degradation tests that primarily manifest through cell cracking, such as mechanical load tests, thermal cycling and humidity freeze tests. The method is based on in-situ measurement of the module’s dark current-voltage (I-V) characteristic curve during the stress test, as well as initial and final module flash testing on a Sun simulator. The method uses superposition of the dark I-V curve with final flash test module short-circuit current to account for shunt and junction recombination losses, as well as series resistance estimation from the in-situ measured dark I-Vs and final flash test measurements. The method is developed based on mc-Si standard modules undergoing several stages of thermo-mechanical stress testing and degradation, for which we investigate the impact of the degradation on the modules light I-V curve parameters, and equivalent solar cell model parameters. Experimental validation of the method on the modules tested shows good agreement between the in-situ estimated power degradation and the flash test measured power loss of the modules, of up to 4.31 % error (RMSE), as the modules experience primarily junction defect recombination and increased series resistance losses. However, the application of the method will be limited for modules experiencing extensive photo-current degradation or delamination, which are not well reflected in the dark I-V characteristic of the PV module.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Shijie Deng ◽  
Alan P. Morrison ◽  
Yong Guo ◽  
Chuanxin Teng ◽  
Ming Chen ◽  
...  

The design and implementation of a real-time breakdown voltage and on-chip temperature monitoring system for single photon avalanche diodes (SPADs) is described in this work. In the system, an on-chip shaded (active area of the detector covered by a metal layer) SPAD is used to provide a dark count rate for the breakdown voltage and temperature calculation. A bias circuit was designed to provide a bias voltage scanning for the shaded SPAD. A microcontroller records the pulses from the anode of the shaded SPAD and calculates its real-time dark count rate. An algorithm was developed for the microcontroller to calculate the SPAD’s breakdown voltage and the on-chip temperature in real time. Experimental results show that the system is capable of measuring the SPAD’s breakdown voltage with a mismatch of less than 1.2%. Results also show that the system can provide real-time on-chip temperature monitoring for the range of −10 to 50 °C with errors of less than 1.7 °C. The system proposed can be used for the real-time SPAD’s breakdown voltage and temperature estimation for dual-SPADs or SPAD arrays chip where identical detectors are fabricated on the same chip and one or more dummy SPADs are shaded. With the breakdown voltage and the on-chip temperature monitoring, intelligent control logic can be developed to optimize the performance of the SPAD-based photon counting system by adjusting the parameters such as excess bias voltage and dead-time. This is particularly useful for SPAD photon counting systems used in complex working environments such as the applications in 3D LIDAR imaging for geodesy, geology, geomorphology, forestry, atmospheric physics and autonomous vehicles.


Nano Today ◽  
2021 ◽  
Vol 39 ◽  
pp. 101226
Author(s):  
Surong Zhang ◽  
Chenyang Guo ◽  
Lifa Ni ◽  
Kerstin M. Hans ◽  
Weiqiang Zhang ◽  
...  

2016 ◽  
Vol 7 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Józef Kuczmaszewski ◽  
Ireneusz Zagórski ◽  
Piotr Zgórniak

Abstract This paper presents an overview of the state of knowledge on temperature measurement in the cutting area during magnesium alloy milling. Additionally, results of own research on chip temperature measurement during dry milling of magnesium alloys are included. Tested magnesium alloys are frequently used for manufacturing elements applied in the aerospace industry. The impact of technological parameters on the maximum chip temperature during milling is also analysed. This study is relevant due to the risk of chip ignition during the machining process.


2001 ◽  
Author(s):  
M. A. Haque ◽  
M. T. A. Saif

Abstract We present a MEMS-based technique for in-situ uniaxial tensile testing of freestanding thin films inside SEM and TEM. It integrates a freestanding thin film specimen with MEMS force sensors and structures to produce an on-chip tensile testing facility. Cofabrication of the specimen with force and displacement measuring mechanisms produces the following unique features: 1) Quantitative experimentation can be carried out in both SEM and TEM, 2) No extra gripping mechanism is required, 3) Specimen misalignment can be eliminated, 4) Pre-stress in specimen can be determined, and 5) Specimens with micrometer to nanometer thickness can be tested. We demonstrate the technique by testing a 200-nanometer thick Aluminum specimen in-situ in SEM. Significant strengthening and anelasticity were observed at this size scale.


Author(s):  
Aleš Chvála ◽  
Robert Szobolovszký ◽  
Jaroslav Kováč ◽  
Martin Florovič ◽  
Juraj Marek ◽  
...  

In this paper, several methods suitable for real time on-chip temperature measurements of power AlGaN/GaN based high-electron mobility transistor (HEMT) grown on SiC substrate are presented. The measurement of temperature distribution on HEMT surface using Raman spectroscopy is presented. We have deployed a temperature measurement approach utilizing electrical I-V characteristics of the neighboring Schottky diode under different dissipated power of the transistor heat source. These methods are verified by measurements with micro thermistors. The results show that these methods have a potential for HEMT analysis in thermal management. The features and limitations of the proposed methods are discussed. The thermal parameters of materials used in the device are extracted from temperature distribution in the structure with the support of 3-D device thermal simulation. The thermal analysis of the multifinger power HEMT is performed. The effects of the structure design and fabrication processes from semiconductor layers, metallization, and packaging up to cooling solutions are investigated. The analysis of thermal behavior can help during design and optimization of power HEMT.


2010 ◽  
Vol 93-94 ◽  
pp. 129-132 ◽  
Author(s):  
W. Sripumkhai ◽  
A. Lekwichai ◽  
Win Bunjongpru ◽  
S. Porntheeraphat ◽  
B. Tunhoo ◽  
...  

The on-chip platinum micro-heater prototypes for thermal cycling equipped with platinum temperature sensor are fabricated. The device has been designed, fabricated and characterized to explore the feasibility of the micro-heater for a fully integrated disposable lab-on-a-chip with the PCR module. The on-chip micro-heater demonstrates that the temperature transitions are shorter by comparison with the conventional PCR temperature routines.


Sign in / Sign up

Export Citation Format

Share Document