Simulation of Texture Development of Plane Carbon Steel in Multipass Rolling Using Analytical Flow Function

2005 ◽  
Vol 495-497 ◽  
pp. 1603-1608 ◽  
Author(s):  
Benoît Beausir ◽  
László S. Tóth ◽  
Olivier Bouaziz

Using a simple analytical flow function, an analysis of the deformation field in symmetrical rolling has been carried out. The so-obtained varying velocity gradient is incorporated into the Taylor polycrystal plasticity model to simulate the development of the deformation texture. The initial discontinuity in the deformation field of the entering material element on the flow lines is also taken into account. Multiple passes of the material is simulated. A strong texture gradient is obtained in good agreement with experiments carried out for rolling of plane carbon steel. It is shown that the shear component of the texture is strongly related to the nature of multiple passes of the rolling operation.

2021 ◽  
Author(s):  
Ameena M. Al-bonayan ◽  
Ahmed El-Hossiany ◽  
Dalia M. Eid ◽  
Abd El-Aziz S. Fouda

Abstract The proton pump inhibitor lansoprazole (PPIL) drug is examined as corrosion inhibitor for high carbon steel (HCS) dipped in 1.0M HCl. The study was conducted utilizing ac impedance spectroscopy (EIS), Mass loss (Ml), polarization tests, and surface checks were utilized to illustrate the importance of this PPIL extract to the prevent corrosion process for HCS. The influence of temperature and concentration of PPIL on the efficiency of inhibition were tested. The corrosion mechanism occurs, when the PPIL extract molecules block the active center in the electrode surface. The inhibition efficiency (%IF) of HCS occurs by the adsorption procedure and HCS is subject to the adsorption of Langmuir. Polarization curves showed that PPIL drug is a mixed- type inhibitor that retards the dissolution of HCS. IF % was deliberated with altering in the concentration of PPIL various temperature of the medium. From the outcome data we get that the good agreement in the all methods.


1985 ◽  
Vol 38 (8) ◽  
pp. 1133 ◽  
Author(s):  
BG Pound ◽  
MH Abdurrahman ◽  
MP Glucina ◽  
GA Wright ◽  
RM Sharp

The corrosion rates of low-carbon steel, and 304, 316 and 410/420 stainless steels in simulated geothermal media containing hydrogen sulfide have been measured by means of the polarization resistance technique. Good agreement was found between weight-loss and polarization resistance measurements of the corrosion rate for all the metals tested. Carbon steel formed a non-adherent film of mackinawite (Fe1 + xS). The lack of protection afforded to the steel by the film resulted in an approximately constant corrosion rate. The stainless steels also exhibited corrosion rates that were independent of time. However, the 410 and 420 alloys formed an adherent film consisting mainly of troilite ( FeS ) which provided only limited passivity. In contrast, the 304 and 316 alloys appeared to be essentially protected by a passive film which did not seem to involve an iron sulfide phase. However, all the stainless steels, particularly the 410 and 420 alloys, showed pitting, which indicated that some breakdown of the passive films occurred.


2004 ◽  
Vol 126 (1) ◽  
pp. 53-61 ◽  
Author(s):  
S. K. Yerra ◽  
H. V. Vankudre ◽  
P. P. Date ◽  
I. Samajdar

A low carbon steel (0.07-wt % carbon) sheet metal was deformed in five different strain paths, from equi-biaxial tension to plane strain to near uniaxial tension, by in-plane stretching. Textural developments were characterized by X-ray Orientation Distribution Function (ODFs) and the same were simulated using different Taylor type deformation texture models. A strong difference in bulk texture developments was observed at respective strain paths. The textural differences largely explain the changes observed in normal anisotropy values obtained by mechanical testing. The new deformation texture simulation model, Lamel, was quite successful in predicting quantitatively such textural differences. Microscopically, the significant features of the substructures were “strain localizations”—first generation dense dislocation walls (DDWs) and micro bands (MBs). Both in-grain rotations and estimated stored energies did depend on the relative appearance of such strain localizations. These, on the other hand, were distinctly related to the textural softening or dM/dε, where M and ε are the Taylor factor and true strain, respectively.


2018 ◽  
Vol 1145 ◽  
pp. 1-7
Author(s):  
Yuan Long Yang ◽  
Qing Chun Meng ◽  
Wei Ping Hu

In the paper, the relationship between the grain size and fatigue life are studied. To specify the initial and short crack propagation life of low carbon steel material, three methods are used in the simulation. At first, the K. Tanaka’s model is introduced to calculate the fatigue life of a grain. Then, the Voronoi Diagram is used to generate the microstructure of grains. At last, a criteria to specify the short crack is proposed. Based on these methods, the numerical simulation is conducted. With the help of the process, the grain sizes are generated randomly in order to specify how grain sizes effect fatigue life. The computational results are in good agreement with the experimental data. The results show that the randomness of fatigue life is closely related to the randomness of grain sizes.


1983 ◽  
Vol 21 ◽  
Author(s):  
B. Bengtsson ◽  
W-B. Li ◽  
K.E. Easterling

ABSTRACTChanges in microstructure due to phase transformation are measured for a number of laser-hardening treatments in both an Nb-microalloyed and a medium carbon steel. These measurements are correlated with theoretical predictions of laser thermal cycles and good agreement is obtained. The kinetics of the ferritic/pearlitic→austenite transformation are also discussed.


2005 ◽  
Vol 475-479 ◽  
pp. 165-168 ◽  
Author(s):  
Ping Yang ◽  
Wang Yue Yang ◽  
Zu Qing Sun

Texture evolutions are determined by XRD and EBSD techniques during ferrite refinement through deformation-enhanced ferrite transformation (DEFT) and dynamic recrystallization (DREX). Evidences of transformation texture, deformation texture and recrystallization texture during DEFT are provided and compared with the texture during DREX. The influence of pass-interval during DEFT on texture is illustrated. Results are discussed in terms of the influences of ferrite grain size and deforming temperature.


2014 ◽  
Vol 8 (1) ◽  
pp. 307-335 ◽  
Author(s):  
M. Montagnat ◽  
N. Azuma ◽  
D. Dahl-Jensen ◽  
J. Eichler ◽  
S. Fujita ◽  
...  

Abstract. Fabric (distribution of crystallographic orientations) profile along the full NEEM ice core, Greenland, is presented in this work. Data were measured in the field by an Automatic Ice Texture Analyzer every 10 m, from 33 m down to 2461 m depth. The fabric evolves from a slightly anisotropic fabric at the top, toward a strong single maximum at about 2300 m, which is typical of a deformation pattern mostly driven by uniaxial compression and simple shearing. A sharp increase in the fabric strengthening is observed at the Holocene to Wisconsin climatic transition. A similar strengthening, toward an anisotropic single maximum-type fabric, has been observed in several ice cores from Greenland and Antarctica, and can be attributed to a positive feedback between changes in ice viscosity at the climatic transition, and the impact of a shear component of stress. Centimeter scale abrupt texture (fabric and microstructure) variations are observed in the bottom part of the core. Their positions are in good agreement with the folding hypothesis used for a climatic reconstruction by Dahl-Jensen et al. (2013). Comparison is made to two others ice cores drilled along the same ridge; the GRIP ice core drilled at the summit of the ice sheet, and the NorthGRIP ice core, drilled 325 km to the NNW of the summit along the ridge, and 365 km upstream from NEEM. The fabric profile clearly reflects the increase in shear deformation when moving NW along the ridge from GRIP to NorthGRIP and NEEM. The difference in fabric profiles between NEEM and NorthGRIP also evidences a stronger lateral extension associated with a sharper ridge at NorthGRIP.


Author(s):  
A. H. EL-ASKALANY ◽  
S. I. MOSTAFA ◽  
A. M. EID

The inhibitive action of Saponinic extract of both Zygophylium album and Zygophylium Egyptian leaves which could serve as eco-friendly materials was investigated on the corrosion of N80 carbon steel in 1 M HCl solution. The techniques employed for the study were weight loss measurements. potentiodynamic polarization, electrochemical frequency modulation (EFM), and electrochemical impedance spectroscopy (EIS). The results obtained show that these extracts could serve as an effective inhibitor for N80 carbon steel. The percentage inhibition increases with increasing concentration of the inhibitor at 25 °C The percentage inhibitor efficiency above 90% was obtained at a concentration of 700 ppm for both extracts. The corrosion rates of steel and inhibitive efficiencies obtained from impedance and polarization measurements were in good agreement with those obtained from weight loss measurements. Potentiodynamic polarization studies clearly reveal that both extracts act as mixed-type inhibitors The study shows that the inhibition efficiency decreased with the temperature rise of the medium. Heat of adsorption and thermodynamic parameters and indicated that the adsorption process is mainly controlled by the physical adsorption process.


2021 ◽  
Vol 173 ◽  
pp. 110912
Author(s):  
A. Hasani ◽  
M. Sepsi ◽  
S. Feyzi ◽  
L.S. Toth

1972 ◽  
Vol 7 (3) ◽  
pp. 170-177 ◽  
Author(s):  
R E Medrano ◽  
P P Gillis

An improved method for the flow-function analysis of visioplasticty data is presented in which the use of techniques for the smoothing of raw data is reduced. It is shown theoretically, and experimentally verified, that under the assumptions of flow-function analysis the final axial, radial, and circumferential normal strains in the extruded material are fixed solely by the reduction ratio. Velocity fields computed from analysis of axial grid-line data are shown to predict accurately the experimental positions of corresponding transverse grid lines. From the velocity fields strain rates are computed. Transformation equations are developed relating the deformation in the spatial co-ordinate system to a more easily interpreted material co-ordinate system. By use of these equations excellent agreement is obtained with experimental normal strains by integrating the calculated strain rates through the deformation zone. Very good agreement is also obtained with the final angles between axial and transverse grid lines.


Sign in / Sign up

Export Citation Format

Share Document