Nanoscale Topography of GC/Pt-C and GC/Pt-Ru-C Electrodes Studied by Means of STM, AFM and XRD Methods

2006 ◽  
Vol 518 ◽  
pp. 271-276 ◽  
Author(s):  
A. Kowal ◽  
P. Olszewski ◽  
D.V. Tripković ◽  
R. Stevanović

Electrodes, assigned as GC/Pt-C and GC/Pt-Ru-C, were formed by deposition of Ptbased catalysts (47.5 wt % Pt + high surface area carbon) and (54 wt. % Pt-Ru alloy + high surface area carbon) on glassy carbon (GC) discs. X-ray diffraction measurements were used for the determination of the average crystallite size and phase composition of both catalysts. Crystallite size for Pt-C catalyst was 2.9 nm for Pt-fcc. In the diffraction pattern of the Pt-Ru-C catalyst two phases, e.g. Pt-Ru-fcc and Ru-hcp were refined using the Rietveld method. Crystallite sizes were 3.9 nm for Pt-Ru-fcc and 2.8 nm for Ru-hcp. STM observations of the surface of GC/Pt-C and GC/Pt-Ru-C electrodes revealed the presence of metal particles of the size in the range 2-6 nm and Pt-C or Pt- Ru-C agglomerates in the range of several tenth of nm. The thickness of the Nafion covering layer determined by AFM is ca. 100 nm. A simplified scheme of the investigated electrodes was created.

2014 ◽  
Vol 20 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Mohammad Behnajady ◽  
Shahrzad Yavari ◽  
Nasser Modirshahla

In this work TiO2-P25 nanoparticles with high surface area have been used as adsorbent for the removal of C.I Acid Red 27 (AR27), as an organic contaminant from aqueous solution. Characteristics of phases and crystallite size of TiO2-P25 nanoparticles were achieved from XRD and the surface area and pore size distribution were obtained from BET and BJH techniques. TiO2-P25 nanoparticles with almost 80% anatase and 20% rutile phases, the average crystallite size of 18 nm, have specific surface area of 56.82 m2 g-1. The effect of various parameters like initial AR27 concentration, pH, contact time and adsorbent dosage has been carried out in order to find desired adsorption conditions. The desired pH for adsorption of AR27 onto TiO2-P25 nanoparticles was 3. The equilibrium data were analyzed with various 2-, 3- and 4-parameter isotherm models. Equilibrium data fitted very well by the 4-parameter Fritz-Schluender model. Results of adsorption kinetics study indicated that the pseudo-second order kinetics provided the best fit with correlation coefficients close to unity.


2006 ◽  
Vol 942 ◽  
Author(s):  
Sang Joon Park ◽  
Tae Wook Eom ◽  
Jae Eun Oh ◽  
Hae Kwang Yang ◽  
Kyung Hwan Kim

ABSTRACTA surfactant-assisted co-precipitation method was employed for obtaining high surface area Ni-SDC with improved structural properties for SOFC applications. In the work, a cationic surfactant, cetyltrimethylammonium bromide(CTAB) was employed with NiCl2, SmCl3 and CeCl3 as precursors and NH4OH as mineralizer. The elimination of surfactants upon calcination gives rise to the formation of high surface area NiO-SDC. When calcined at 600°C, the powders with surface area of 249 m2/g, were obtained and the pore size was 14.45 nm. The powders consist of two phases, the cubic NiO and SDC confirmed with X-ray diffraction identification.


2010 ◽  
Vol 148-149 ◽  
pp. 1656-1660
Author(s):  
Jian Hui Sun ◽  
Jing Lan Feng ◽  
Xiao Ke Tian ◽  
Sun Ying Dong

Flower like Bi2WO6 powders were synthesized via a mild hydrothermal method. Analysis of X-ray diffraction (XRD) revealed that optimal calcination temperature was believed to be 400 °C at which the photocatalyst displayed high surface area and small crystallite size. Scanning electron microscope (SEM) showed that obtained Bi2WO6 with a flower like shape, which greatly enhance the surface area of catalyst and increase the contact area with dyes. The photocatalytic activity of as-prepared catalyst was investigated using Rhodamine B as a model compound under solar light irradiation. Results showed that the prepared photocatalyst was an effective photocatalyst and exhibited high photocatalytic performance. In the presence of 1 g/L Bi2WO6, 80.76% decolorization efficiency of RhB could be achived after 150 min irradiation


2011 ◽  
Vol 471-472 ◽  
pp. 1040-1045 ◽  
Author(s):  
Samaneh Shahgaldi ◽  
Zahira Yaakob ◽  
Dariush Jafar Khadem ◽  
Wan Ramli Wan Daud ◽  
Edy Herianto Majlan

In recent years, one dimensional nanostructure, nanowires, nanofibers with unique properties have been a subject of intense research due to reduction of devise dimension, potential properties from the re-arrangement at the molecular level and high surface area. There are many methods for synthesize such as laser ablation, chemical vapour deposition, solution method micro pulling down method but all these method faced to the major disadvantages of being complicated with long wasting time and relatively high expense . The electrospinning recently used for producing ceramic, metal, and carbon nanofibers. In this report, we incorporate palladium into silica nanofibers for the first time, and the effect of doping of palladium into the silica nanofibers is investigated. The different ratio of palladium to silica and comparing with silica nanofibers is also reported. The composition, morphology, structure and surface area of silica, and silica palladium nanofibers were investigated by thermo gravimetric analysis (TGA), x-ray diffraction (XRD), scanning electron microscopy (SEM),Fourier transform infrared spectroscopy (FT-IR), and Micromeriics. To the best of our knowledge, investigation on characteristic on Silica palladium nanofibers has not been reported up to now. The result reveal that the silica nanofibers compare to silica doped with palladium have lower diameter, and also by increasing the temperature above 600 °C, the reduction in length of nanofibers happened. High surface area of silica palladium nanofibers can be one of the promising materials for hydrogen storage.


2012 ◽  
Vol 585 ◽  
pp. 95-99 ◽  
Author(s):  
M. Mahajan ◽  
K. Singh ◽  
O.P. Pandey

Vanadium carbide is known for its applications due to extreme hardness and high melting point. In this present work, vanadium carbide nanoparticles have been synthesized in a specially designed stainless steel autoclave by solvothermal route using vanadium pentoxide (V2O5) as precursor along with a hydrocarbon acetone (C3H6O) in the presence of reducing agent magnesium (Mg). The optimization of reaction time was studied at constant temperature of 800oC. The product powder was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM) and Brunauer – Emmett – Teller (BET) techniques. The results indicate that the product was vanadium carbide having particle size of about 30 nm with high surface area.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Imarally V. de S. R. Nascimento ◽  
Willams T. Barbosa ◽  
Raúl G. Carrodeguas ◽  
Marcus V. L. Fook ◽  
Miguel A. Rodríguez

The objective of this work has been the synthesis of wollastonite by solution combustion method. The novelty of this work has been obtaining the crystalline phase without the need of thermal treatments after the synthesis. For this purpose, urea was used as fuel. Calcium nitrate was selected as a source of calcium and colloidal silica served as a source of silicon. The effect of the amount of fuel on the combustion process was investigated. Temperature of the combustion reaction was followed by digital pyrometry. The obtained products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and specific surface area. The results showed that the combustion synthesis provides nanostructured powders characterized by a high surface area. When excess of urea was used, wollastonite-2M was obtained with a submicronic structure.


2003 ◽  
Vol 36 (6) ◽  
pp. 1411-1416 ◽  
Author(s):  
Z. K. Heiba ◽  
Y. Akin ◽  
W. Sigmund ◽  
Y. S. Hascicek

Polycrystalline samples of (Eu1−xYbx)2O3(x= 0.0, 0.1, 0.2, 0.5, 0.8, 0.9 and 1.0) were synthesized by a sol–gel process. X-ray diffraction data were collected and the crystal structures were refined by the Rietveld method. All samples are found to have the same crystal system and formed solid solutions over the whole range ofx. The lattice parameters are found to vary linearly with the compositionx. The cationic distribution over the two non-equivalent sites 8band 24dof the space group Ia{\bar 3} is found to be random in the range 0.0 <x≤ 0.5 and preferential in the range 0.5 <x≤ 1.0. Replacing Eu3+and Yb3+by each other introduces slight changes in the atomic coordinates. Crystallite size and microstrain analysis are performed on single and multiple orders for each sample using profile fitting and the Warren–Averbach method. The obtained values of microstrain are correlated with the distribution of the rare earth (RE) ions over the two cationic sites of the structure. The average crystallite size ranges from 35 to 96 nm and the mean-square strain from 0.052 to 0.225 × 10−2.


2020 ◽  
Vol 20 (3) ◽  
pp. 61-65
Author(s):  
ISMAIL ISMAIL ◽  
RESI MULIANI ◽  
ZULFALINA ZULFALINA ◽  
SITI HAJAR SHEIKH MD FADZULLAH

Magnesium powder has become an important material in the development of science and technology such as alloy and hydrogen storage. In this work, the chemical composition, crystallite size, and crystal structure of the magnesium powder sample have been studied by using x-ray fluorescent and x-ray diffraction. The x-ray diffraction data of the magnesium powder sample was analyzed by using the Rietveld method to obtain the crystal structure. Our results show that the purity of our magnesium powder sample is 93.1%. Our sample has good crystallinity with the average crystallite size of 31 nm. The crystal structure is found to be a hexagonal closed-packed structure with the lattice constants of 3.2100 Å (a and b-axis) and 5.2107 Å (c-axis). Our result revealed that the lattice constant in the c-axis of magnesium powder is influenced by impurity. This finding suggests that the impurity can affect the crystal structure of a material in general.


2018 ◽  
Vol 83 (11) ◽  
pp. 1261-1271
Author(s):  
Huan-Yan Xu ◽  
Bo Li ◽  
Ping Li

Zinc ferrite (ZnFe2O4) photocatalysts with different morphologies (sizes and shapes) were synthesized to explore the effect of morphology on their photocatalytic efficiency. The results obtained using field emission scanning electron microscopy (FESEM) revealed that the obtained samples had the needle-, cube-, granule- and plate-like morphology, labeled as NZFO, CZFO, GZFO and PZFO, respectively. X-ray diffraction (XRD) patterns showed that all the samples had the spinel structure of ZnFe2O4 without any other impurities. The calculated average crystallite size followed the order NZFO<GZFO<CZFO< <PZFO. The surface area was inversely proportional to the average crystallite size and followed the order NZFO>GZFO>CZFO>PZFO. The photocatalytic efficiency for the degradation of methyl orange also followed the order NZFO> >GZFO>CZFO>PZFO. The morphology-dependent photocatalytic efficiency of ZnFe2O4 was closely related with its crystallite size and surface area. The smaller the crystallite size was, the larger the surface area was, and the higher the photocatalytic efficiency was.


2020 ◽  
Vol 20 (4) ◽  
pp. 791
Author(s):  
Winda Rahmalia ◽  
Jean-Francois Fabre ◽  
Thamrin Usman ◽  
Zéphirin Mouloungui

This study aims to prepare dealuminated metakaolinite which has a high surface area by using NH4OH as an activator. The natural kaolinite sample was treated at 600 °C for 6 h in order to obtain metakaolinite. A dealuminated metakaolinite was then prepared by the repeated activation method using concentrated ammonia (5 M NH4OH) at room temperature. Depending on the nature of each type of material, natural kaolinite, NH4OH treated kaolinite, metakaolinite and NH4OH treated metakaolinite were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET-N2) measurements. XRD and FTIR results confirmed that structural transformation from kaolinite to metakaolinite had occurred. According to SEM-EDS data, the activation of metakaolinite by NH4OH allowed the dealumination of metakaolinite. The increase in the Si/Al ratio was almost twice as high as in kaolinite. BET-N2 analysis showed that the specific surface area and the total pore volume increased significantly after activation. Its adsorption properties were tested against bixin. Bixin adsorption on dealuminated metakaolinite followed pseudo-second order kinetic where k2 = 0.20 g/mg min. The adsorption isotherm followed the Langmuir model where qm = 0.72 mg/g.


Sign in / Sign up

Export Citation Format

Share Document