Structural Defects and Critical Electric Field in 3C-SiC

2006 ◽  
Vol 527-529 ◽  
pp. 431-434 ◽  
Author(s):  
Michael A. Capano ◽  
A.R. Smith ◽  
Byeung C. Kim ◽  
E.P. Kvam ◽  
S. Tsoi ◽  
...  

3C-SiC p-type epilayers were grown to thicknesses of 1.5, 3, 6 and 10 μm on 2.5° off-axis Si(001) substrates by chemical vapor deposition (CVD). Silane and propane were used as precursors. Structural analysis of epilayers was performed using transmission electron microscopy (TEM), high-resolution x-ray diffractometry (HRXRD), and Raman spectroscopy. TEM showed defect densities (stacking faults, twins and dislocations) decreasing with increasing distance from the SiC/Si interface as the lattice mismatch stress is relaxed. This observation was corroborated by a monotonic decrease in HRXRD peak width (FWHM) from 780 arcsecs (1.5 μm thick epilayer) to 350 arcsecs (10 μm thick epilayer). Significant further reduction in x-ray FWHM is possible because the minimum FWHM detected is greater than the theoretical FWHM for SiC (about 12 arcsecs). Raman spectroscopy also indicates that the residual biaxial in-plane strain decreases with increasing epilayer thickness initially, but becomes essentially constant between 6 and 10 μm. Structural defect density shows the most significant reduction in the first 2 μm of growth. Phosphorus implantation was used to generate n+/p junctions for the measurement of the critical electric field in 3C-SiC. Based on current-voltage analyses, the critical electric field in p-type 3C-SiC with a doping of 2x1017 cm-3 is 1.3x106 V/cm.

1996 ◽  
Vol 449 ◽  
Author(s):  
P. Kung ◽  
A. Saxler ◽  
D. Walker ◽  
X. Zhang ◽  
R. Lavado ◽  
...  

ABSTRACTWe present the metalorganic chemical vapor deposition growth, n-type and p-type doping and characterization of AlxGa1-xN alloys on sapphire substrates. We report the fabrication of Bragg reflectors and the demonstration of two dimensional electron gas structures using AlxGa1-xN high quality films. We report the structural characterization of the AlxGa1-xN / GaN multilayer structures and superlattices through X-ray diffraction and transmission electron microscopy. A density of screw and mixed threading dislocations as low as 107 cm-2 was estimated in AlxGa1-xN / GaN structures. The realization of AlxGa1-xN based UV photodetectors with tailored cut-off wavelengths from 365 to 200 nm are presented.


2002 ◽  
Vol 747 ◽  
Author(s):  
M. P. Singh ◽  
C. S. Thakur ◽  
N. Bhat ◽  
S. A. Shivashankar

ABSTRACTWe report the characterization of carbonaceous aluminium oxide, Al2O3:C, films grown on Si(100) by metalorganic chemical vapor deposition. The focus is on the study of the effects of carbon on the dielectric properties of aluminium oxide in a qualitative manner. The carbon present in the aluminium oxide film derives from aluminium acetylacetonate used as the source of aluminium. As-grown films comprise nanometer-sized grains of alumina (∼ 20–50 nm) in an amorphous carbonaceous matrix, as examined by X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The films are shiny; they are smooth as observed by scanning electron microscopy (SEM). An attempt has been made to explore the defects (viz., oxide charge density) in the aluminium oxide films using room temperature high frequency capacitance – voltage (C-V) and current–voltage (I-V) measurements. The hysteresis and stretch-out in the high frequency C-V plots is indicative of charge trapping. The role of heteroatoms, as characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy, in the transport of charge in Al2O3:C films is discussed.


2013 ◽  
Vol 205-206 ◽  
pp. 400-405
Author(s):  
Peter Zaumseil ◽  
Yuji Yamamoto ◽  
Markus Andreas Schubert ◽  
Thomas Schroeder ◽  
Bernd Tillack

One way to further increase performance and/or functionality of Si micro-and nanoelectronics is the integration of alternative semiconductors on silicon (Si). We studied the Ge/Si heterosystem with the aim to realize a Ge deposition free of misfit dislocations and with low content of other structural defects. Ge nanostructures were selectively grown by chemical vapor deposition on periodic Si nanoislands (dots and lines) on SOI substrate either directly or with a thin (about 10 nm) SiGe buffer layer. The strain state of the structures was measured by different laboratory-based x-ray diffraction techniques. It was found that a suited SiGe buffer improves the compliance of the Si compared to direct Ge deposition; plastic relaxation during growth can be prevented, and fully elastic relaxation of the structure can be achieved. Transmission electron microscopy confirms that the epitaxial growth of Ge on nanostructured Si is free of misfit dislocations.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Zainab Yunusa ◽  
Suraya Abdul Rashid ◽  
Mohd Nizar Hamidon ◽  
Syed Hafiz ◽  
Ismayadi Ismail ◽  
...  

We report the synthesis of Graphitic Nanoribbons (GNRs) using Alcohol Catalytic Chemical Vapor Deposition (ACCVD). Bulk GNR was synthesized directly on a piezoelectric substrate using one-step ACCVD. The synthesized GNRs were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Energy Dispersive X-Ray (EDX), Atomic Force Microscopy (AFM), and Raman spectroscopy. The characterization results showed Y-tip morphology of bulk and filamentous as-grown GNR having varying width that lies between tens and hundreds of nm and length of several microns. Based on the thickness obtained from the AFM and the analysis from the Raman spectroscopy, it was concluded that the synthesized GNRs are multiple-layered and graphitic in nature. With the direct synthesis of GNR on a piezoelectric substrate, it could have applications in the sensor industries, while the Y-tip GNR could have potentialities in semiconductor applications.


2002 ◽  
Vol 745 ◽  
Author(s):  
M. P. Singh ◽  
C. S. Thakur ◽  
N. Bhat ◽  
S. A. Shivashankar

ABSTRACTWe report the characterization of carbonaceous aluminium oxide, Al2O3:C, films grown on Si(100) by metalorganic chemical vapor deposition. The focus is on the study of the effects of carbon on the dielectric properties of aluminium oxide in a qualitative manner. The carbon present in the aluminium oxide film derives from aluminium acetylacetonate used as the source of aluminium. As-grown films comprise nanometer-sized grains of alumina (∼ 20–50 nm) in an amorphous carbonaceous matrix, as examined by X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The films are shiny; they are smooth as observed by scanning electron microscopy (SEM). An attempt has been made to explore the defects (viz., oxide charge density) in the aluminium oxide films using room temperature high frequency capacitance – voltage (C-V) and current–voltage (I-V) measurements. The hysteresis and stretch-out in the high frequency C-V plots is indicative of charge trapping. The role of heteroatoms, as characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy, in the transport of charge in Al2O3:C films is discussed.


1995 ◽  
Vol 387 ◽  
Author(s):  
M. LíBezný ◽  
J. Poortmans ◽  
J. Dekoster ◽  
S. Degroote ◽  
A. Vantomme ◽  
...  

AbstractRapid thermal annealing (RTA) of Fe-Si layers co-deposited on n- and p- type Si (100) and Si-capped relaxed Si0.6Ge0.4 (100) substrates was studied. Relaxed (100) Si0.6Ge0.4 epitaxial layers represent a pseudo-matched substrate for the β-FeSi2 phase. Fe-Si layers with a 1:2 composition ratio were deposited at room temperature in an MBE system. Samples were then subjected to a rapid thermal annealing in a H2/N2-atmosphere in the temperature range between 500 and 800 °C. Conversion electron Mössbauer spectroscopy showed that the layers consist of the β-FeSi2 phase. Nomarski microscopy revealed crystal grains of the diameter from 5 to 10 μm. Cross-section transmission electron microscopy study found smooth surfaces and interfaces. No significant structural defects were found inside the grains. Differences between current-voltage characteristics of simple devices prepared on these layers agree with the trends expected from their band diagrams.


2004 ◽  
Vol 19 (4) ◽  
pp. 347-351
Author(s):  
J. Xu ◽  
X. S. Wu ◽  
B. Qian ◽  
J. F. Feng ◽  
S. S. Jiang ◽  
...  

Ge–Si inverted huts, which formed at the Si∕Ge interface of Si∕Ge superlattice grown at low temperatures, have been measured by X-ray diffraction, grazing incidence X-ray specular and off-specular reflectivities, and transmission electron microscopy (TEM). The surface of the Si∕Ge superlattice is smooth, and there are no Ge–Si huts appearing on the surface. The roughness of the surfaces is less than 3 Å. Large lattice strain induced by lattice mismatch between Si and Ge is found to be relaxed because of the intermixing of Ge and Si at the Si∕Ge interface.


1991 ◽  
Vol 220 ◽  
Author(s):  
F. Namavar ◽  
J. M. Manke ◽  
E. P. Kvam ◽  
M. M. Sanfacon ◽  
C. H. Perry ◽  
...  

ABSTRACTThe objective of this paper is to demonstrate the epitaxial growth of SiGe strained layers using atmospheric-pressure chemical vapor deposition (APCVD). We have grown SiGe layers with various thicknesses and Ge concentrations at temperatures ranging from 800–1000°C. The samples were studied using a variety of methods, including transmission electron microscopy (TEM), high resolution X-ray diffraction (HRXRD) and Raman spectroscopy (RS). Both HRXRD and RS results indicate that samples with about 10% Ge and a thickness of about 1000 Å are almost fully strained. TEM analyses of these samples indicate a film defect density less than 105/cm2. SIMS results indicate that the oxygen concentration in the epitaxial layers is lower than that found in CZ substrates.Our analyses also indicate that as-grown epitaxial Ge layers several microns thick have a defect density less than 107/cm2. The relatively low defect density in both SiGe and Ge layers grown on Si has been attributed to far higher dislocation glide velocity at the relatively elevated growth temperatures employed in CVD and to very good growth cleanliness.


2021 ◽  
Vol 1035 ◽  
pp. 1043-1049
Author(s):  
Di Xiang ◽  
Chang Long Shao

A simple route has been developed for the synthesis of Ag2O/ZnO heterostructures and the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and photoluminescence (PL) spectroscopy analysis. Considering the porous structure of Ag2O/ZnO, the photocatalytic degradation for the organic dyes, such as eosin red (ER), methyl orange (MO), methylene blue (MB) and rhodamine B (RhB), under visible light irradiation was investigated in detail. Noticeably, Ag2O/ZnO just took 40 min to degrade 96 % MB. The rate of degradation using the Ag2O/ZnO heterostructures was 2.3 times faster than that of the bare porous ZnO nanospheres under visible light irradiation due to that the recombination of the photogenerated charge was inhibited greatly in the p-type Ag2O and n-type ZnO semiconductor. So the Ag2O/ZnO heterostuctures showed the potential application on environmental remediation.


Sign in / Sign up

Export Citation Format

Share Document