Sm2Fe17Nx Produced by Calciothermic Reduction Using Different Iron Powders

2006 ◽  
Vol 530-531 ◽  
pp. 187-190
Author(s):  
J.C. Boareto ◽  
Juliano Soyama ◽  
M.D.V. Felisberto ◽  
André L. Slaviero ◽  
Paulo A.P. Wendhausen

This paper compared the influence of the iron powder in the production of Sm2Fe17Nx by calciothermic reduction. Two available iron powders were used: Basf CL carbonyl iron and Ancor MH-100 sponge iron. Both alloys were prepared and analyzed with X-ray diffraction, scanning electronic microscope and vibrating sample magnetometer. The results showed that the alloy produced with Ancor Mh-100 presents a higher anisotropy. The alloy produced with Basf CL has a smaller anisotropy but a higher coercivity. This can be explained by the difference in the microstructure of the two powders.

2010 ◽  
Vol 177 ◽  
pp. 260-263 ◽  
Author(s):  
Qing Kai Xing ◽  
Zhi Jian Peng ◽  
Xiu Li Fu ◽  
Zhi Qiang Fu ◽  
Cheng Biao Wang ◽  
...  

Mn-Zn ferrites doped with Cr3+ were prepared by “one-step synthesis” and conventional two-step synthesis methods, respectively. Their phase compositions and microstructures were characterized by X-ray diffraction and scanning electron microscopy, respectively. And their magnetic magnetic performance, such as saturation magnetization (Ms), magnetic hysteresis, initial permeability μi and power loss were comparatively investigated by vibrating sample magnetometer. It was observed that the difference of magnetic performance of the samples prepared by both methods is little. The similar performance of both methods makes the “one-step synthesis” especially attractive for application when considering energy economization.


2007 ◽  
Vol 534-536 ◽  
pp. 1365-1368 ◽  
Author(s):  
J.C. Boareto ◽  
Juliano Soyama ◽  
M.D.V. Felisberto ◽  
R. Hesse ◽  
A.V.A. Pinto ◽  
...  

This paper compares the effect of using different types of iron powders for the preparation of Sm2Fe17 by calciothermic reduction-diffusion (CRD). Three types of iron powder were used: carbonyl, sponge and water atomized. The results show that, when immediately nitrogenated after the CRD process, Sm2Fe17 prepared from sponge and water atomized iron powders yield Sm2Fe17N3-magnets with a high degree of texture. However, after a suitable treatment with hydrogen followed by nitrogenation, Sm2Fe17-powders made from Carbonyl iron produce magnets with the best quality regarding coercivity, remanence and degree of texture.


2003 ◽  
Vol 776 ◽  
Author(s):  
Qixiang Wang ◽  
Guoqing Ning ◽  
Fei Wei ◽  
Guohua Luo

AbstractCarbon-encapsulated ferric magnetic nanoparticles were prepared by the grain-boundary-reaction of ultrafine goethite particles. The mechanism of the grain-boundary-reaction was studied with high-resolution transmission electronic microscope, X-ray diffraction and thermo gravimetric analysis. The magnetic properties are measured with a vibrating sample magnetometer. The diameter of carbon-encapsulated ferric magnetic nanoparticles is 30~60 nm, and the coercive force and saturate magnetization are 315 Oe and 30 emu /(g powder), respectively. These composite particles are very stable in air.


10.30544/96 ◽  
2015 ◽  
Vol 21 (2) ◽  
pp. 65-72 ◽  
Author(s):  
Marimuthu Ilayaraja ◽  
L. John Berchmans ◽  
Sankara Raman Sankaranarayanan

In this study, magnetic material of the Yttrium based alloy such as nickel intermetallic compound is prepared by calciothermic reduction process (CRD), at different temperatures, for 7 hours, under Argon atmosphere. Kinetic analyses have been used to calculate the conversion rate and the rate constant at different temperatures. Thermodynamic calculations have been performed to estimate the Gibbs free energy at different temperatures. Scanning Electron Microscopy (SEM), X-ray diffraction and EDX analysis have been performed to characterize the samples produced at 1273 K. Magnetic properties have been estimated using Vibrating Sample Magnetometer.


Author(s):  
Y. H. Liu

Ordered Ni3Fe crystals possess a LI2 type superlattice similar to the Cu3Au structure. The difference in slip behavior of the superlattice as compared with that of a disordered phase has been well established. Cottrell first postulated that the increase in resistance for slip in the superlattice structure is attributed to the presence of antiphase domain boundaries. Following Cottrell's domain hardening mechanism, numerous workers have proposed other refined models also involving the presence of domain boundaries. Using the anomalous X-ray diffraction technique, Davies and Stoloff have shown that the hardness of the Ni3Fe superlattice varies with the domain size. So far, no direct observation of antiphase domain boundaries in Ni3Fe has been reported. Because the atomic scattering factors of the elements in NijFe are so close, the superlattice reflections are not easily detected. Furthermore, the domain configurations in NioFe are thought to be independent of the crystallographic orientations.


2014 ◽  
Vol 900 ◽  
pp. 172-176 ◽  
Author(s):  
Ji Mei Niu ◽  
Zhi Gang Zheng

The Fe3O4 magnetic nanoparticles obtained by the aqueous coprecipitation method are characterized systematically using scanning electron microscope, X-ray diffraction and vibrating sample magnetometer. These magnetic nanoparticles are spheric, dispersive, and have average grain size of 50 nm. The size and magnetic properties of Fe3O4 nanoparticles can be tuned by the reaction temperature. All samples exhibit high saturation magnetization (Ms=53.4 emu·g-1) and superparamagnetic behavior with a block temperature (TB) of 215K. These properties make such Fe3O4 magnetic nanoparticles worthy candidates for the magnetic carriers of targeted-drug or gene therapy in future.


2015 ◽  
Vol 08 (05) ◽  
pp. 1550018 ◽  
Author(s):  
Shupeng Liu ◽  
Na Chen ◽  
Fufei Pang ◽  
Zhengyi Chen ◽  
Tingyun Wang

Purpose: This work focused on the investigation the hyperthermia performance of the carbon-coated magnetic particles (CCMPs) in laser-induced hyperthermia. Materials and methods: We prepared CCMPs using the organic carbonization method, and then characterized them with transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectrophotometry, vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). In order to evaluate their performance in hyperthermia, the CCMPs were tested in laser-induced thermal therapy (LITT) experiments, in which we employed a fully distributed fiber Bragg grating (FBG) sensor to profile the tissue's dynamic temperature change under laser irradiation in real time. Results: The sizes of prepared CCMPs were about several micrometers, and the LITT results show that the tissue injected with the CCMPs absorbed more laser energy, and its temperature increased faster than the contrast tissue without CCMPs. Conclusions: The CCMPs may be of great help in hyperthermia applications.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 558
Author(s):  
Wenhui Zhu ◽  
Caiyun Zhang ◽  
Yali Chen ◽  
Qiliang Deng

Photothermal materials are attracting more and more attention. In this research, we synthesized a ferrocene-containing polymer with magnetism and photothermal properties. The resulting polymer was characterized by Fourier-transform infrared (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Its photo-thermocatalytic activity was investigated by choosing methylene blue (MB) as a model compound. The degradation percent of MB under an irradiated 808 nm laser reaches 99.5% within 15 min, and the degradation rate is 0.5517 min−1, which is 145 times more than that of room temperature degradation. Under irradiation with simulated sunlight, the degradation rate is 0.0092 min−1, which is approximately 2.5 times more than that of room temperature degradation. The present study may open up a feasible route to degrade organic pollutants.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1141
Author(s):  
Georgia Basina ◽  
Hafsa Khurshid ◽  
Nikolaos Tzitzios ◽  
George Hadjipanayis ◽  
Vasileios Tzitzios

Fe-based colloids with a core/shell structure consisting of metallic iron and iron oxide were synthesized by a facile hot injection reaction of iron pentacarbonyl in a multi-surfactant mixture. The size of the colloidal particles was affected by the reaction temperature and the results demonstrated that their stability against complete oxidation related to their size. The crystal structure and the morphology were identified by powder X-ray diffraction and transmission electron microscopy, while the magnetic properties were studied at room temperature with a vibrating sample magnetometer. The injection temperature plays a very crucial role and higher temperatures enhance the stability and the resistance against oxidation. For the case of injection at 315 °C, the nanoparticles had around a 10 nm mean diameter and revealed 132 emu/g. Remarkably, a stable dispersion was created due to the colloids’ surface functionalization in a nonpolar solvent.


2010 ◽  
Vol 43 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Leandro M. Acuña ◽  
Diego G. Lamas ◽  
Rodolfo O. Fuentes ◽  
Ismael O. Fábregas ◽  
Márcia C. A. Fantini ◽  
...  

The local atomic structures around the Zr atom of pure (undoped) ZrO2nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO2nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr—O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye–Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to thezdirection; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.


Sign in / Sign up

Export Citation Format

Share Document