Preparation of Ta-12.5Si-25B Powders by Mechanical Alloying

2006 ◽  
Vol 530-531 ◽  
pp. 197-202 ◽  
Author(s):  
Alfeu Saraiva Ramos ◽  
Erika Coaglia Trindade Ramos ◽  
Carlos de Moura Neto

The present work reports on the preparation of the Ta5SiB2 compound by highenergy ball milling and subsequent heat treatment from elemental Ta-12.5at%Si-25at%B powder mixture. The milling process was carried out at room temperature in a planetary ball mill under argon atmosphere. Following the milling process, the powders were heat-treated at 1200oC for 4h under Ar atmosphere in order to obtain the equilibrium microstructure. The milled and heat-treated powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicated that the Si peaks disappeared after milling for 1h. It was noted that the broadening and the reduced intensity of Ta peaks occurred continuously up to milling for 10h, suggesting that the Si and B atoms were preferentially dissolved into the Ta lattice during ball milling to form a supersaturated solid solution. A halo was formed in Ta-12.5at%Si-25at%B powders milled for 100h, suggesting that an amorphous phase was achieved. No intermetallic phase was formed in powders milled for 200h. A large amount of Ta5SiB2 was formed after heat treatment at 1200oC for 4h. In addition, peaks of TaB and another unknown phase were also identified.

2010 ◽  
Vol 659 ◽  
pp. 159-164 ◽  
Author(s):  
Gréta Gergely ◽  
Ferenc Wéber ◽  
Mihály Tóth ◽  
Attila Lajos Tóth ◽  
Zsolt E. Horváth ◽  
...  

Hydroxyapatite (HAp) was successfully produced from recycled eggshell, seashell and phosphoric acid by using two different type of milling method (attrition milling and ball milling). According to the analysis, the attrition milling resulted nanosize HAp even after milling, while the ball milling process provided HAp only after a 400oC, 2 h long heat treatment. The grain size in both cases were approximately preserved during the heat treatment. The effect of temperature on stoichiometry, morphology and crystallinity of HAp powders were investigated. The structures of the HAp were characterized by X-ray diffraction and Scanning Electron Microsopy.


1990 ◽  
Vol 188 ◽  
Author(s):  
C. A. Paszkiet ◽  
M. A. Korhonen ◽  
Che-Yu Li

ABSTRACTStresses in thin narrow textured metal lines were measured using x-ray diffraction techniques. Arrays of 1.5μm wide, 0.32μm thick aluminum lines, both with and without a 0.32μm thick SiNx passivation layer, were heat-treated at 400°C in a hydrogen/nitrogen atmosphere. After heat treatment the lines were examined periodically using chromium radiation to monitor the relaxation of the stress developed during heat treatment. The apparent stress in both the passivated and unpassivated lines relaxed significantly over the measurement period of three days. The higher stresses present in the passivated lines may be partially responsible for the voids which were found after aging at room temperature.


2012 ◽  
Vol 576 ◽  
pp. 252-255 ◽  
Author(s):  
K.Y. Sara Lee ◽  
K.M. Christopher Chin ◽  
Ramesh Singh ◽  
C.Y. Tan ◽  
M.A. Hassan ◽  
...  

The current study is to examine the effect of ultrasonication on the synthesis of forsterite (Mg2SiO4) powder. Ultrasonication and ball milling were performed using talc and magnesium oxide as starting precursors, followed by heat treatment to obtain forsterite. The X-ray diffraction results of the powders heat treated at 1200°C showed that the 2 hours ultrasonication followed by 3 hours ball milling was beneficial in retaining the forsterite phase in the matrix. The results were similar to ball milling for 10 hours prior to heat treatment. The derived powders also exhibited very fine crystallite size in the range of 28 to 35 nm thus indicating the viability of using ultrasonication as part of the processing steps in the synthesizing of forsterite ceramics.


2013 ◽  
Vol 212 ◽  
pp. 15-20
Author(s):  
Kazimierz J. Ducki ◽  
Jacek Mendala ◽  
Lilianna Wojtynek

The influence of prolonged ageing on the precipitation process of the secondary phases in an Fe-Ni superalloy of A-286 type has been studied. The samples were subjected to a solution heat treatment at 980°C for 2 h and water quenched, and then aged at temperatures of 715, 750 and 780°C at holding times from 0.5 to 500 h. Structural investigations were conducted using TEM and X-ray diffraction methods. The X-ray phase analyses performed on the isolates were obtained by anodic dissolution of the solid samples. After solution heat treatment the alloy has the structure of twinned austenite with a small amount of undissolved precipitates, such as carbide TiC, carbonitride TiC0.3N0.7, nitride TiN0.3, carbosulfide Ti4C2S2, Laves phase Ni2Si, and boride MoB. The application of ageing causes precipitation processes of γ-Ni3(Al,Ti), G (Ni16Ti6Si7), η (Ni3Ti), β (NiTi) and σ (Cr0.46Mo0.40Si0.14) intermetallic phases, as well as the carbide M23C6. It was found that the main phase precipitating during alloy ageing was the γ intermetallic phase.


2008 ◽  
Vol 591-593 ◽  
pp. 147-153
Author(s):  
Gilbert Silva ◽  
Erika Coaglia Trindade Ramos ◽  
N.S. da Silva ◽  
Alfeu Saraiva Ramos

A large amount of the Ti6Si2B compound can be formed by mechanical alloying and subsequent heat treatment from the elemental Ti-22.2at%Si-11.1at%B powder mixture, but the yield powder after ball milling is reduced due to an excessive agglomeration of ductile particles on the balls and vial surfaces. This work reports on the structural evaluation of Ti-22.2at%Si-11.1at%B powders milled with PCA addition, varying its amount between 1 and 2 wt-%. The milling process was carried out in a planetary ball mill under argon atmosphere, and the milled powders were then heated at 1200oC for 1h under Ar atmosphere in order to obtain equilibrium structures. Samples were characterized by X-ray diffraction, scanning electron microscopy, and thermal analysis. Results revealed that the PCA addition reduced the excessive agglomeration during the ball milling of Ti-22.2at-%Si-11.1at-%B powders. After heating at 1200oC for 1h, the Ti5Si3, Ti3O and/or Ti2C phases were preferentially formed in Ti-22.2at%Si-11.1at%B powders milled with PCA addition, and the Ti6Si2B formation was inhibited.


2021 ◽  
Author(s):  
Mei Yang ◽  
Yishu Zhang ◽  
Haoxing You ◽  
Richard Smith ◽  
Richard D. Sisson

Abstract Selective laser melting (SLM) is an additive manufacturing technique that can be used to make the near-net-shape metal parts. M2 is a high-speed steel widely used in cutting tools, which is due to its high hardness of this steel. Conventionally, the hardening heat treatment process, including quenching and tempering, is conducted to achieve the high hardness for M2 wrought parts. It was debated if the hardening is needed for additively manufactured M2 parts. In the present work, the M2 steel part is fabricated by SLM. It is found that the hardness of as-fabricated M2 SLM parts is much lower than the hardened M2 wrought parts. The characterization was conducted including X-ray diffraction (XRD), optical microscopy, Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) to investigate the microstructure evolution of as-fabricated, quenched, and tempered M2 SLM part. The M2 wrought part was heat-treated simultaneously with the SLM part for comparison. It was found the hardness of M2 SLM part after heat treatment is increased and comparable to the wrought part. Both quenched and tempered M2 SLM and wrought parts have the same microstructure, while the size of the carbides in the wrought part is larger than that in the SLM part.


2014 ◽  
Vol 802 ◽  
pp. 20-24 ◽  
Author(s):  
Lucas Moreira Ferreira ◽  
Luciano Braga Alkmin ◽  
Érika C.T. Ramos ◽  
Carlos Angelo Nunes ◽  
Alfeu Saraiva Ramos

The milling process of elemental Ti-2Ta-22Si-11B and Ti-6Ta-22Si-11B (at-%) powder mixtures were performed in a planetary Fritsch P-5 ball mill using stainless steel vials (225 mL) and hardened steel balls (19 mm diameter). Ball-to-powder weight ratio of 10:1 and a rotary speed of 300 rpm were adopted, varying the milling time. Wet milling (isopropyl alcohol) for 20 more minutes was used to increase the yield powder in to the vial. Following the Ti-Ta-Si-B powders milled for 600 min were heat-treated at 1100°C for 1 h in order to obtain the equilibrium structures. The milled powders and heat-treated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. Supersaturated Ti solid solutions were formed during ball milling of Ti-Ta-Si-B powders while that the Ti5Si3 phase was formed after milling for 620 min of the Ta-richer powder mixture only. The particles sizes were initially increased during the initial milling times, and the wet milling provided the yield powder into the vials. A large amount of pores was found in both the sintered samples which presented the formation of the TiSS,(ss-solid solution) Ti6Si2B and TiB.


2006 ◽  
Vol 118 ◽  
pp. 53-58
Author(s):  
Elisabeth Meijer ◽  
Nicholas Armstrong ◽  
Wing Yiu Yeung

This study is to investigate the crystallite development in nanostructured aluminium using x-ray line broadening analysis. Nanostructured aluminium was produced by equal channel angular extrusion at room temperature to a total deformation strain of ~17. Samples of the extruded metal were then heat treated at temperatures up to 300oC. High order diffraction peaks were obtained using Mo radiation and the integral breadth was determined. It was found that as the annealing temperature increased, the integral breadth of the peak reflections decreased. By establishing the modified Williamson-Hall plots (integral breadth vs contract factor) after instrumental correction, it was determined that the crystallite size of the metal was maintained ~80 nm at 100oC. As the annealing temperature increased to 200oC, the crystallite size increased to ~118 nm. With increasing annealing temperature, the hardness of the metal decreased from ~60 HV to ~45 HV.


2018 ◽  
Vol 25 (08) ◽  
pp. 1950023 ◽  
Author(s):  
ARKADEB MUKHOPADHYAY ◽  
TAPAN KUMAR BARMAN ◽  
PRASANTA SAHOO

The present work reports the deposition of a quaternary Ni-B-W-Mo coating on AISI 1040 medium carbon steel and its characterization. Quaternary deposits are obtained by suitably modifying existing electroless Ni-B bath. Composition of the as-deposited coating is analyzed by energy dispersive X-ray spectroscopy. The structural aspects of the as-deposited and coatings heat treated at 300[Formula: see text]C, 350[Formula: see text]C, 400[Formula: see text]C, 450[Formula: see text]C and 500[Formula: see text]C are determined using X-ray diffraction technique. Surface of the as-deposited and heat-treated coatings is examined using a scanning electron microscope. Very high W deposition could be observed when sodium molybdate is present in the borohydride-based bath along with sodium tungstate. The coatings in their as-deposited condition are amorphous while crystallization takes place on heat treatment. A nodulated surface morphology of the deposits is also observed. Vickers’ microhardness and crystallite size measurement reveal inclusion of W and Mo results in enhanced thermal stability of the coatings. Solid solution strengthening of the electroless coatings by W and Mo is also observed. The applicability of kinetic strength theory to the hardening of the coatings on heat treatment is also investigated. Corrosion resistance of Ni-B-W-Mo coatings and effect of heat treatment on the same are also determined by electrochemical techniques.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1883 ◽  
Author(s):  
Chao Peng ◽  
Guangxue Chen

In this study, poly(vinyl alcohol) (PVA) composite films enhanced by α-chitin nanowhiskers (ChWs) were prepared through heat treatment. The obtained membranes were assessed by means of FTIR spectroscopy, X-ray diffraction, thermogravimetric analysis, regular light transmittance, mechanical tests, permeability and water absorption. The influence of the nano-component and heat treatment on the mechanical, thermal and water-resistant properties of the composite membrane were analyzed. From the results of the work, the produced films with excellent barrier properties and inexpensive raw processed materials have great prospects in packaging applications.


Sign in / Sign up

Export Citation Format

Share Document