Evolution of Microstructure and Mechanical Properties of HSLA Strip Steel after Cold Rolling and Annealing

2007 ◽  
Vol 567-568 ◽  
pp. 345-348
Author(s):  
Marcel Janošec ◽  
Ivo Schindler ◽  
Vlastimil Vodárek ◽  
Emerich Místecký ◽  
Martin Růžička

A large testing programme of a strip steel HSLA grade, microalloyed by vanadium, titanium and niobium, was conducted. The experiment was based on combination of cold rolling, recrystallization annealing, mechanical testing, metallographic examinations and TEM analysis. Flat samples with thickness 3.9 mm were rolled in several passes with the total height reduction 5 to 75 %. Afterwards the laboratory mill products were annealed in the vacuum furnace with the protective gas atmosphere consisting of N2+H2. The annealed samples underwent the mechanical testing. The gained results – hardness, yield stress, tensile strength and their ratio, as well as elongation, were summarized in graph in dependence on relative height reduction before annealing. It was confirmed that by a suitable combination of size of previous cold deformation and parameters of the following recrystallization annealing it is possible to influence a complex of mechanical properties of particular strips. Particular trends of strength and plastic properties correspond to each other and they may be utilized for optimization of terms of heat treatment of the investigated HSLA steel in a cold rolling mill. These trends are caused by structure-forming processes (recrystallization, grain coarsening, changes of the state of precipitates) which were documented by micrographs.

2012 ◽  
Vol 706-709 ◽  
pp. 1297-1302
Author(s):  
De Jiang Li ◽  
Xiao Qin Zeng ◽  
Xin Su ◽  
Yan Cai Xie ◽  
Wen Jiang Ding

Pre-cold rolling with the reduction of 15% was employed on Mg-8Gd-3Y-0.5Zr (wt.%) (GW83K) alloy in different initial states: as-extruded (state 1) and extruded followed by annealing (state 2) with the aim to investigate the effects on microstructure and mechanical properties. Microstructure observation revealed that there are more amounts of mechanical twins in the alloy in state 2 than that of the alloy in state 1 after cold rolling, which indicates the different deformation mechanisms. Further investigation through EBSD has elucidated the grain boundary structure and types of twins in the alloys. Pre-cold deformation greatly promotes the age hardening response and the peak aging time at 200°C was found to be nearly 12h for the alloy in both state 1 and state 2, which were about 24h and 80h less than that of their non-deformed counterparts, respectively. Tensile tests at temperatures lower than 250°C showed that the alloy in state 1 has a predominant mechanical property than that of the alloy in state 2, while at 300°C, it displayed a reverse tendency.


2013 ◽  
Vol 747-748 ◽  
pp. 855-859
Author(s):  
Xiao Xue Chen ◽  
Shun Guo ◽  
Xin Qing Zhao

A series of Ti-Mo-Sn alloys with different Mo contents from 7% to 15% (wt. %) were prepared, and the effects of Mo content and thermo-mechanical treatment on their microstructural evolution and mechanical behavior were investigated. The experimental results indicated that the β to α martensite transformation can be effectively suppressed with increasing Mo content. After cold rolling treatment, superior mechanical properties and low modulus were achieved in Ti-8Mo-4Sn alloy, with tensile strength of 1108MPa, yield strength of 1003MPa and low Youngs modulus of 53GPa. The influence of severe cold deformation on the macrostructure and mechanical properties was discussed based on the characterization of X-Ray diffraction and mechanical tests. It was demonstrated that the cold rolling induced fine α martensite and high density dislocations lead to the high strength of the Ti-Mo-Sn alloys. The fine α martensite as well as the β matrix with low stability guarantee low Youngs modulus.


2019 ◽  
Vol 944 ◽  
pp. 99-103
Author(s):  
Peng Fei Zhang ◽  
Xu Kun Hu ◽  
Guo Cheng Sun ◽  
Bo Gao ◽  
Bin Xu

In this paper, a typical new zirconium alloy (Zr-Sn-Nb system) was used as the research object. The zirconium alloy strip was prepared from a series of production processes from smelting. By optimizing the process of cold processing with the change of the deformation amount and the intermediate heat treatment, the mechanical properties of the zirconium alloy were studied by different processing. The results are as follows: (1) The mechanical properties of the new zirconium alloy have reached the mechanical properties of Zirlo alloy with the optimization of the alloy composition, and (2) The zirconium alloy can refine the grain strength by the control of deformation degree and annealing temperature during cold deformation. The larger of the cold deformation, the smaller the average of the grains and the higher the yield strength of the material. The yield strength of the material was decreased by cold rolling and annealing more than once; (3) The larger the cold rolling variable of the zirconium alloy in cold deformation, it is beneficial to the second phase to be fine, dispersed and uniformly distributed, thus improving the strength of the material.


2016 ◽  
Vol 838-839 ◽  
pp. 392-397 ◽  
Author(s):  
Pavel Kusakin ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev ◽  
Dmitri Molodov

The influence of thermo-mechanical treatment consisting of cold rolling followed by recrystallization annealing on the grain size and mechanical properties of a high-Mn TWIP steel was studied. An Fe-23Mn-0.3C-1.5Al TWIP steel (wt. %) was subjected to extensive cold rolling with a reduction of 80% (true strain of ∼1.6) and then annealed in the temperature interval ranging from 400 to 900 °C during 20 minutes. Recovery processes took place below 500 °C, partial recrystallization was evident at ~550°C and fully recrystallized structure evolved after annealing at 600 °C and higher. The static recovery resulted in a slight decrease in the yield strength from 1400 MPa to 1250 MPa and the ultimate tensile strength from 1540 MPa to 1400 MPa whereas the total elongation of 4% did not changed. The recrystallization development led to a drastic drop of strength and an increase in ductility. The yield strength of 225 MPa, the ultimate tensile strength of 700 MPa and the total elongation of 79% was obtained after annealing at 900 °C. Correspondingly, the grain size increased from 0.2 μm to 6.2 μm with increase in anneal temperature from 550 to 900°C.


2009 ◽  
Vol 282 ◽  
pp. 9-16
Author(s):  
M.N. Mungole ◽  
M. Surender ◽  
R. Balasubramaniam ◽  
S. Bhargava

9Cr-1Mo ferritic steel samples containing 0.2 and 0.5 wt % silicon in 40 % cold rolled state were recrystallize-annealed at 1100, 1200 and 1300 K. The grain growth and mechanical properties after recrystallization-annealing for 20 hr to 100 hr were investigated. No significant grain growth was observed even after 100 hr annealing at 1100 and 1200 K. The recrystallization-annealing at 1200 K resulted grains smaller in size than those at 1100 K. Annealing at 1300 K exhibited the enhanced grain growth with decorative microstructures. Initial annealing after cold rolling at 1100 K exhibited low hardness which further increased with annealing temperature. Annealing at 1100 K for 20 hrs exhibited low yield strength and ultimate tensile strength compared to those of as received samples. However, for 100 hrs annealing these properties remained nearly constant for 0.2 Si composition and increased marginally for 0.5 Si composition. Recrystallization-annealing exhibited improved ductility for both the compositions.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4230
Author(s):  
Tianhao Gong ◽  
Junhui Dong ◽  
Zhiming Shi ◽  
Xinba Yaer ◽  
Huimin Liu

This paper addresses the effects of Ce-rich mischmetal on the microstructure evolution of a 5182 aluminum alloy during annealing and rolling processes. The Ce-rich mischmetal was added to an as-cast 5182 aluminum alloy in an induction furnace, and this was followed by homogenized annealing at 450 °C for 24 h and a rolling operation. The microstructure evolution and mechanical properties’ analysis of the 5182 Al alloy were characterized. The results show that the Ce-rich mischmetal could modify the microstructure, refine the α-Al grains, break the network distribution of Mg2Si phases, and prevent Cr and Si atoms from diffusing into the Al6(Mn, Fe) phase in the as-cast 5182 Al alloys. Ce-rich mischmetal elements were also found to refine the Al6(Mn, Fe) phase after cold rolling. Then, the refined Al6(Mn, Fe) particles inhibited the growth of recrystallization grains to refine them from 10.01 to 7.18 μm after cold rolling. Consequently, the tensile strength of the cold-rolled 5182 Al alloy increased from 414.65 to 454.34 MPa through cell-size strengthening, dislocation density strengthening, and particle strengthening. The tensile strength of the recrystallization annealed 5182 Al alloy was increased from 322.16 to 342.73 MPa through grain refinement strengthening, and this alloy was more stable after the recrystallization annealing temperature.


2020 ◽  
Vol 998 ◽  
pp. 15-20 ◽  
Author(s):  
Mahmoud H.A. Gadelhaq ◽  
Atef S. Hamada ◽  
Ibrahim M. Ghayad ◽  
Antti Järvenpää ◽  
Matias Jaskari ◽  
...  

The influence of recrystallization annealing on the microstructure, mechanical properties and corrosion behaviour of an austenitic TWIP steel bearing medium Mn and V alloying was investigated. The steel undergone a heavy cold deformation of 65 % reduction. Subsequently, recrystallization annealing at 1000 °C and 1100 °C for 15 min was conducted to achieve different grain structures. The microstructural evolution was studied using optical microscopy and electron backscatter diffraction technique. Mechanical properties were determined using tensile tests at room temperature. Corrosion behaviour was measured by cyclic potentiodynamic polarization at 3.5 pct NaCl. For comparison, austenitic stainless-steel Type 201 was used in this study. It was observed that at 1000 °C, a non-uniform austenitic grain structure with vanadium carbides distributed throughout the matrix was obtained. However, a coarse grain structure without carbides was induced at 1100 °C. The fine-grained structure enhanced at 1000 °C exhibited higher strength and good ductility. Contrary to this, the corrosion results showed that a significant deterioration in the corrosion resistance could be observed in sodium chloride solution for the achieved structure at 1000 °C compared to 201 stainless steel.


10.30544/136 ◽  
2016 ◽  
Vol 22 (1) ◽  
pp. 17-24
Author(s):  
Aleksandra Ivanović ◽  
Biserka Trumić ◽  
Svetlana Ivanov ◽  
Saša Marjanović ◽  
Silvana Dimitrijević ◽  
...  

The aim of this investigation was to determine the influence of the recrystallization temperature and recrystallization time on the microstructure and mechanical properties of the PdNi5 alloy subjected to cold deformation in the process of rolling at a constant deformation degree. The samples of PdNi5 alloy were recrystallization annealed within the temperature range of 200-1000ºC and annealing time range of 20-45 min after cold rolling with deformation degree of 97%. The tensile test was carried out using universal material testing machine. The hardness was also measured on the combined device for measuring Vickers and Brinell hardness. Metallographic observations were performed on an optical microscope. The analysis of the results of investigations regarding the microstructural changes and corresponding mechanical properties of cold-rolled PdNi5 strips shows that annealing temperature of 500ºC was sufficient to activate the energy for various recrystallization processes causing a change in the mechanical properties of cold-rolled PdNi5 strips. The annealing time, at constant annealing temperature, almost did not affect a recrystallization temperature and the mechanical properties of the cold-rolled PdNi5 strips.


Sign in / Sign up

Export Citation Format

Share Document