Development of an Automated Design System for Oil Pumps with Multiple Profiles (Circle, Ellipse and Involute)

2009 ◽  
Vol 620-622 ◽  
pp. 37-40 ◽  
Author(s):  
Chul Kim ◽  
Beom Cheol Hwang ◽  
Hyun Ki Moon ◽  
Hyun Woo Lee ◽  
Myung Jun Song

An internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other other applications. In particular, this type of pump is an essential element of an automotive engine to feed lubricant oil. We perform a theoretical analysis of the internal lobe pump whose main components are rotors. Usually, the outer is characterized by a lobe with elliptical and involute shapes, while the inner rotor profile is determined as the conjugate to the other rotor. Our integrated system, which is composed of three main modules, was developed through AutoLISP using AutoCAD. It generates a new lobe profile, and automatically calculates the flow rate and flow rate irregularity according to the lobe profile generated. Results obtained from the analysis enable the designer and manufacturer of oil pumps to be more efficient.

2006 ◽  
Vol 129 (10) ◽  
pp. 1099-1105 ◽  
Author(s):  
Y. J. Chang ◽  
J. H. Kim ◽  
C. H. Jeon ◽  
Chul Kim ◽  
S. Y. Jung

A gerotor pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, construction, and other various applications. In particular, the pump is an essential machine element that feeds lubricant oil in an automotive engine. The main components of the pump are the two rotors. Usually, the outer one is characterized by lobes with a circular shape, while the inner rotor profile is determined as a conjugate to the other. In this study, the design optimization has been carried out to determine the design parameters that maximize the specific flow rate and minimize the flow rate irregularity. The integrated system, which is composed of three main modules, has been developed through AutoLISP, Visual Basic language, and the CAD method, and considers various design parameters. An optimally designed model for a general type of gerotor pump has been generated and experimentally verified for its pump performances. Results obtained using the system enable the designer and manufacturer of the oil pump to be more efficient in this field.


1997 ◽  
Vol 21 (2) ◽  
pp. 109-121 ◽  
Author(s):  
G. Mimmi ◽  
P. Pennacchi

The subject of this paper is the theoretical analysis of the internal lobe pump which is a particular type of positive displacement rotary pump. The main components of the pump are the rotors: usually the outer one is characterised by lobes with circular shape, while the inner rotor profile is determined as conjugate to the other. For this reason the first topic presented here is the definition of the geometry of the rotors starting from the design parameters. The choice of these parameters is subject to some limitations in order to avoid inner rotor undercutting and to limit the pressure angle between the rotors. Now we will consider the design optimisation. The first step is the determination of the instantaneous flow rate as a function of the design parameters. This allows us to calculate two performance indexes commonly used for the study of positive displacement pumps: the flow rate irregularity and the specific flow rate. These indexes are used to optimise the design of the pump and to obtain the sets of optimum design parameters. Finally further considerations are presented regarding the calculation and the use of other performance indexes, the specific slipping and the rotor curvature, which are particularly suitable for giving more elements for the analysis of this case.


1992 ◽  
Vol 114 (2) ◽  
pp. 278-285 ◽  
Author(s):  
J. J. Moskwa ◽  
J. K. Hedrick

There is considerable interest in coordinated automotive engine/transmission control to smooth shifts, and for traction control of front wheel vehicles. This paper outlines a nonlinear dynamic engine model of a port fuel-injected engine, which can be used for control algorithm development. This engine model predicts the mean engine brake torque as a function of the engine controls (i.e., throttle angle, spark advance, fuel flow rate, and exhaust gas recirculation (E. G. R.) flow rate). The model has been experimentally validated for a specific engine, and includes: • intake manifold dynamics, • fuel delivery dynamics, and • process delays inherent in the four-stroke engine. This model is used in real time within a control algorithm, and for system simulation. Also, it is flexible enough to represent a family of spark ignition automotive engines, given some test and/or simulation data for setting parameters.


Trudy NAMI ◽  
2021 ◽  
pp. 6-15
Author(s):  
V. E. Tarasenko ◽  
O. Ch. Rolich ◽  
O. A. Yakubovich ◽  
A. V. Kozlov

Introduction (problem statement and relevance). The technical state of machines undergoes changes during their life cycle. The qualitative determination of the technical condition of components, assemblies and systems of engines requires not only the application of modern control methods that provide reliable results, but also the use of high-performance specialized diagnostic equipment for the timely detection of faults to increase the reliability and service life of machines.The purpose of the study was to substantiate the architecture of an integrated system of vibroacoustic and thermal diagnostics, which would make it possible to assess the residual life of systems, assemblies and mechanisms of diesel engines in real time.Methodology and research methods. The modern methods of collection and computer processing of signals from various types of sensors, as well as wavelet functions and digital image processing were used in the study.Scientifi c novelty and results. Algorithms for calculating and processing the analytical ensemble (including scaleograms and histograms) of the data fl ow have been developed and used in an integrated system of complex diagnostics to identify defects in automotive engines and detect the moments of their origin.Practical signifi cance. The proposed algorithms made it possible to diagnose malfunctions and calculate the residual resource of automotive engine units in real time, display the dynamics of signal changes on the display, process user requests and form a protocol for changing the diesel state picture during its operation.


2013 ◽  
Vol 712-715 ◽  
pp. 2888-2893
Author(s):  
Hai Qiang Liu ◽  
Ming Lv

In order to realize information sharing and interchange of complex product multidisciplinary collaborative design (MCD) design process and resources. The Process integrated system control of product multidisciplinary collaborative design was analyzed firstly in this paper, then design process of complex product for supporting multidisciplinary collaborative was introduced, a detailed description is given of the organization structure and modeling process of MCD-oriented Integration of Product Design Meta-model ; and concrete implement process of process integrated system control method was introduced to effectively realize information sharing and interchange between product design process and resources.


1996 ◽  
Author(s):  
Steven L. Puterbaugh ◽  
William W. Copenhaver ◽  
Chunill Hah ◽  
Arthur J. Wennerstrom

An analysis of the effectiveness of a three-dimensional shock loss model used in transonic compressor rotor design is presented. The model was used during the design of an aft-swept, transonic compressor rotor. The demonstrated performance of the swept rotor, in combination with numerical results, is used to determine the strengths and weaknesses of the model. The numerical results were obtained from a fully three-dimensional Navier-Stokes solver. The shock loss model was developed to account for the benefit gained with three-dimensional shock sweep. Comparisons with the experimental and numerical results demonstrated that shock loss reductions predicted by the model due to the swept shock induced by the swept leading edge of the rotor were exceeded. However, near the tip the loss model under-predicts the loss because the shock geometry assumed by the model remains swept in this region while the numerical results show a more normal shock orientation. The design methods and the demonstrated performance of the swept rotor is also presented. Comparisons are made between the design intent and measured performance parameters. The aft-swept rotor was designed using an inviscid axisymmetric streamline curvature design system utilizing arbitrary airfoil blading geometry. The design goal specific flow rate was 214.7 kg/sec/m2 (43.98 lbm/sec/ft2), the design pressure ratio goal was 2.042, and the predicted design point efficiency was 94.0. The rotor tip sped was 457.2 m/sec (1500 ft/sec). The design flow rate was achieved while the pressure ratio fell short by 0.07. Efficiency was 3 points below prediction, though at a very high 91 percent. At this operating condition the stall margin was 11 percent.


1999 ◽  
Author(s):  
C. Channy Wong ◽  
Douglas R. Adkins ◽  
Ronald P. Manginell ◽  
Gregory C. Frye-Mason ◽  
Peter J. Hesketh ◽  
...  

Abstract An integrated microsystem to detect traces of chemical agents (μChemLab™) is being developed at Sandia for counter-terrorism and nonproliferation applications. This microsystem has two modes of operation: liquid and gas phase detection. For the gas phase detection, we are integrating these critical components: a preconcentrator for sample collection, a gas chromatographic (GC) separator, a chemically selective flexural plate wave (FPW) array mass detector, and a latching valve onto a single chip. By fabricating these components onto a single integrated system (μChemLab™ on a chip), the advantages of reduced dead volume, lower power consumption, and smaller physical size can be realized. In this paper, the development of a latching valve will be presented. The key design parameters for this latching valve are: a volumetric flow rate of 1 mL/min, a maximum hold-off pressure of 40 kPa (6 psi), a relatively low power, and a fast response time. These requirements have led to the design of a magnetically actuated latching relay diaphragm valve. Magnetic actuation is chosen because it can achieve sufficient force to effectively seal against back pressure and its power consumption is relatively low. The actuation time is rapid, and valve can latch in either an open or closed state. A corrugated parylene membrane is used to separate the working fluid from internal components of the valve. Corrugations in the parylene ensure that the diaphragm presents minimum resistance to the actuator for a relativley large deflection. Two different designs and their performance of the magnetic actuation have been evaluated. The first uses a linear magnetic drive mechanism, and the second uses a relay mechanism. Preliminary results of the valve performance indicates that the required driving voltage is about 10 volts, the measured flow rate is about 50 mL/min, and it can hold off pressure of about 5 psi (34 kPa). Latest modifications of the design show excellent performance improvements.


2013 ◽  
Vol 345 ◽  
pp. 233-237
Author(s):  
Ben Liang Yu ◽  
Jun Fei Wu ◽  
Ying Yu

This paper first studied the feasibility in application and advantages of the the full metal single screw pump by the method of theoretical research . Then the paper deducted the motion characteristics of the rotor around the stator and flow rate of the metal single screw pump .It is pointed that the center of the rotor profile is always located in the long shaft of the section of stator in any section .As the rotor rotates, the center of the rotor profile on this section takes straight reciprocating motion along the long axis of stator section .The results indicate that it exists feasibility in the designing and processing of full metal single screw pump. Thereby it provides theoretical basis for the application of full metal screw pump.


Biosensors ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 40
Author(s):  
Mohd Kamuri ◽  
Zurina Zainal Abidin ◽  
Mohd Yaacob ◽  
Mohd Hamidon ◽  
Nurul Md Yunus ◽  
...  

This paper describes the development of an integrated system using a dry film resistant (DFR) microfluidic channel consisting of pulsed field dielectrophoretic field-flow-fractionation (DEP-FFF) separation and optical detection. The prototype chip employs the pulse DEP-FFF concept to separate the cells (Escherichia coli and Saccharomyces cerevisiae) from a continuous flow, and the rate of release of the cells was measured. The separation experiments were conducted by changing the pulsing time over a pulsing time range of 2–24 s and a flow rate range of 1.2–9.6 μ L min − 1 . The frequency and voltage were set to a constant value of 1 M Hz and 14 V pk-pk, respectively. After cell sorting, the particles pass the optical fibre, and the incident light is scattered (or absorbed), thus, reducing the intensity of the transmitted light. The change in light level is measured by a spectrophotometer and recorded as an absorbance spectrum. The results revealed that, generally, the flow rate and pulsing time influenced the separation of E. coli and S. cerevisiae. It was found that E. coli had the highest rate of release, followed by S. cerevisiae. In this investigation, the developed integrated chip-in-a lab has enabled two microorganisms of different cell dielectric properties and particle size to be separated and subsequently detected using unique optical properties. Optimum separation between these two microorganisms could be obtained using a longer pulsing time of 12 s and a faster flow rate of 9.6 μ L min − 1 at a constant frequency, voltage, and a low conductivity.


Author(s):  
Naoki Horiguchi ◽  
Hiroyuki Yoshida ◽  
Akiko Kaneko ◽  
Yutaka Abe

As revealed by Fukushima Daiichi nuclear disaster, countermeasures against severe accidents in nuclear power plants are an urgent need. In particular, from the viewpoint of protecting containment and suppressing diffusion of the radioactive materials, it is most important to install filtered venting devices to release high pressure contaminated gas to the atmosphere with elimination radioactive materials in the gas. A Multi Venturi Scrubber System (MVSS) is one of the filtered venting devices, and used in European reactors [1, 2]. One of the main components of the MVSS is a Venturi Scrubber (VS). It is considered that a dispersed or dispersed annular flow is formed in the VS by a self-priming phenomena. In the self-priming phenomena, the liquid was suctioned from a surrounding region of the VS to the inside of the VS. And a part of the radioactive materials are eliminated through the gas-liquid interface of the dispersed or annular dispersed flow. Therefore, to consider the MVSS operation characteristics, it is important whether to occur the self-priming or not and the liquid flow rate of the self-priming of the VS. The objective of this paper is to understand the self-priming phenomena of the VS for the filtered venting. And theoretical analysis and experiment were conducted. By comparing these results, we discussed about the mechanism of the self-priming phenomena. As results, the self-priming phenomena in the VS was confirmed and, at a high gas flow rate, the suspension of the self-priming is confirmed experimentally and theoretically.


Sign in / Sign up

Export Citation Format

Share Document