Simulation and Evaluation of Residual Stress in Bone at the Interface with Implant

2011 ◽  
Vol 681 ◽  
pp. 315-320
Author(s):  
Abdelilah Benmarouane ◽  
Yeting Shi ◽  
Bastien Mireux ◽  
Thomas Buslaps ◽  
Alain Lodini

The use of the implants has become current since 1930. With the improvement of technology, titanium alloy coated with nano-hydroxyapatite has been used in the medical field. As a long-term establishment is a meter of the therapeutic success, it is necessary to use biocompatible implants in order to have good mechanical and fracture resistance at the interface bone-implant. In orthopaedic surgery Titanium (Ti-Al-4V) implants are currently coated with hydroxyapatite (HAp), Ca10 (PO4)6 (OH)2, in order to obtain a stable and functional direct connection between the bone and the implant. At the implant-bone interface the new bone reconstituted after implantation must have the same mechanicals properties as the natural bone in order to accept the implant. Therefore we studied the residuals stresses of the new bone crystals reconstituted at the interface applying non destructive x-ray diffraction and using finite element analysis in order to compare the results.

2012 ◽  
Vol 706-709 ◽  
pp. 1661-1666
Author(s):  
Abdelilah Benmarouane ◽  
Pierre Millet ◽  
Thomas Buslaps ◽  
Alain Lodini ◽  
Veijo Honkimäki

The aim of the present study was to study the interface implant-bone by synchrotron radiation, the implant has two faces the first one coated with hydroxyapatite and the second uncoated. In orthopaedic surgery, Titanium (Ti-Al-4V) implants are currently coated with hydroxyapatite (HAp), Ca10(PO4)6(OH)2, in order to obtain a stable and functional direct connection between the bone and the implant. At the implant-bone interface, the new bone reconstituted after two months of implantation must have the same properties like the natural bone in order to accept the implant. Therefore we studied the texture of the reconstituted bone crystals at the interface applying non destructive x-ray diffraction. The required high spatial resolution was achieved utilizing high-energy synchrotron radiation on ID15 at ESRF in Grenoble, France.


2010 ◽  
Vol 652 ◽  
pp. 185-190
Author(s):  
Abdelilah Benmarouane ◽  
Helene Citterio-Bigot ◽  
Pierre Millet ◽  
Thomas Buslaps ◽  
Alain Lodini

Technology developments of implant composition and manufacture have been used in the medical field. Several different implants have been developed with varying degrees of commercial success. As a long-term establishment is a measure of the therapeutic success, it is necessary to use biocompatible implants in order to have good mechanical and fracture resistance of new bone reconstructed at the interface with the implant. Titanium (Ti-Al-4V) implants coated with hydroxyapatite (HAp), Ca10 (PO4)6 (OH)2 are widely used in orthopedic applications in order to obtain a stable and functional direct connection between the bone and the implant. At the implant-bone interface the new bone reconstituted after implantation must have the same orientation as the natural bone in order to accept the implant. Therefore we studied the texture and the crystallinity of the new bone crystals reconstituted at the interface applying by high-energy synchrotron radiation on beamline ID15 at ESRF in Grenoble, France.


Author(s):  
A. R. Lang

AbstractX-ray topography provides a non-destructive method of mapping point-by-point variations in orientation and reflecting power within crystals. The discovery, made by several workers independently, that in nearly perfect crystals it was possible to detect individual dislocations by X-ray diffraction contrast started an epoch of rapid exploitation of X-ray topography as a new, general method for assessing crystal perfection. Another discovery, that of X-ray Pendellösung, led to important theoretical developments in X-ray diffraction theory and to a new and precise method for measuring structure factors on an absolute scale. Other highlights picked out for mention are studies of Frank-Read dislocation sources, the discovery of long dislocation helices and lines of coaxial dislocation loops in aluminium, of internal magnetic domain structures in Fe-3 wt.% Si, and of stacking faults in silicon and natural diamonds.


2020 ◽  
Vol 9 (1) ◽  
pp. 998-1008
Author(s):  
Guo Li ◽  
Zheng Zhuang ◽  
Yajun Lv ◽  
Kejin Wang ◽  
David Hui

AbstractThree nano-CaCO3 (NC) replacement levels of 1, 2, and 3% (by weight of cement) were utilized in autoclaved concrete. The accelerated carbonation depth and Coulomb electric fluxes of the hardened concrete were tested periodically at the ages of 28, 90, 180, and 300 days. In addition, X-ray diffraction, thermogravimetry, and mercury intrusion porosimetry were also performed to study changes in the hydration products of cement and microscopic pore structure of concrete under autoclave curing. Results indicated that a suitable level of NC replacement exerts filling and accelerating effects, promotes the generation of cement hydration products, reduces porosity, and refines the micropores of autoclaved concrete. These effects substantially enhanced the carbonation and chloride resistance of the autoclaved concrete and endowed the material with resistances approaching or exceeding that of standard cured concrete. Among the three NC replacement ratios, the 3% NC replacement was the optimal dosage for improving the long-term carbonation and chloride resistance of concrete.


2020 ◽  
Vol 22 (37) ◽  
pp. 20972-20989 ◽  
Author(s):  
Amy C. Marschilok ◽  
Andrea M. Bruck ◽  
Alyson Abraham ◽  
Chavis A. Stackhouse ◽  
Kenneth J. Takeuchi ◽  
...  

This review highlights the efficacy of EDXRD as a non-destructive characterization tool in elucidating system-level phenomena for batteries.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2505
Author(s):  
Catalin Panaghie ◽  
Ramona Cimpoeșu ◽  
Bogdan Istrate ◽  
Nicanor Cimpoeșu ◽  
Mihai-Adrian Bernevig ◽  
...  

Zinc biodegradable alloys attracted an increased interest in the last few years in the medical field among Mg and Fe-based materials. Knowing that the Mg element has a strengthening influence on Zn alloys, we analyze the effect of the third element, namely, Y with expected results in mechanical properties improvement. Ternary ZnMgY samples were obtained through induction melting in Argon atmosphere from high purity (Zn, Mg, and Y) materials and MgY (70/30 wt%) master alloys with different percentages of Y and keeping the same percentage of Mg (3 wt%). The corrosion resistance and microhardness of ZnMgY alloys were compared with those of pure Zn and ZnMg binary alloy. Materials were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), linear and cyclic potentiometry, and immersion tests. All samples present generalized corrosion after immersion and electro-corrosion experiments in Dulbecco solution. The experimental results show an increase in microhardness and indentation Young Modulus following the addition of Y. The formation of YZn12 intermetallic phase elements with a more noble potential than pure Zinc is established. A correlation is obtained between the appearance of new Y phases and aggressive galvanic corrosion.


2005 ◽  
Vol 60 (5) ◽  
pp. 505-510 ◽  
Author(s):  
Tong-Lai Zhang ◽  
Jiang-Chuang Song ◽  
Jian-Guo Zhang ◽  
Gui-Xia Ma ◽  
Kai-Bei Yu

Cobalt(II) and zinc(II) complexes of ethyl carbazate (ECZ), [Co(ECZ)3](NO3)2 and [Zn(ECZ)3] (NO3)2, were synthesized. Single crystals of these two compounds were grown from aqueous solutions using a slow evaporation method. Their structures have been determined by X-ray diffraction analysis. Both of them are monoclinic with space group P21/n. The complexes are further characterized by element analysis and IR measurements. Their thermal stabilities are studied by using TG-DTG, DSC techniques. When heated to 350 °C, only metal oxide was left for both complexes.


Sign in / Sign up

Export Citation Format

Share Document