Mechanical Properties and Deformation Texture of GH536 Superalloy Strip

2013 ◽  
Vol 747-748 ◽  
pp. 489-496 ◽  
Author(s):  
Chong Lin Jia ◽  
Qiang Fan ◽  
Ying Wang ◽  
Yong Yue Zhang ◽  
Qun Li

With cold rolling deformation between 12.5% and 60% for GH 536 superalloy strips, effect of deformation on the mechanical properties, texture formation and microstructure evolution have been investigated. The results show that an increase of deformation will lead to an increase of mechanical properties. As the deformation was 60%, the tensile strength and yield strength of the strip were 1430MPa and 1370MPa, respectively, and the elongation of strip was 4.5%. Also, an increase of deformation will lead to an increase of hardness, yield ratio and deformation resistance as well as an increase of rolling textures such as Goss {110}<001>, S{213}<4>, Copper {112}<1> and especially Brass {110}<12>. The optimized processing parameters of cold rolling deformation between 25% and 37.5% have been proposed to obtain an excellent formability and cold workability for GH 536 superalloy strips.

2012 ◽  
Vol 560-561 ◽  
pp. 655-660
Author(s):  
Li Juan Li ◽  
Li Hua Liu ◽  
Jing Wang

In order to guide atmosphere annealing process in industry, the effect of atmosphere and holding times on the surface quality and mechanical properties of the cold-rolling plate of Fe-42% Ni (4J42) was studied. It is found that in the laboratory, surface qualities of all the samples annealed at different annealing condition are all good enough. When the ratio of hydrogen and nitrogen is below 70%:30%, at different holding time, with increasing of H2 proportion, 4J42’s tensile strength and yield strength all increases, and the hardness declines. And except H2:N2=70%:30, when holding time is less than or equal to 1.2min, at different ratio of hydrogen and nitrogen, holding time will influence 4J42’s mechanical properties little. So combine requires in industry with the experiment results, it can be concluded that for 4J42 alloy, annealing at atmosphere of hydrogen nitrogen ratio is less than 70%:30% for about 1.2min is appropriate to atmosphere annealing process in industry.


2019 ◽  
Vol 944 ◽  
pp. 193-198
Author(s):  
Tian Yi Wang ◽  
Ren Bo Song ◽  
Heng Jun Cai ◽  
Jian Wen ◽  
Yang Su

The present study investigated the effect of cold rolling reduction on microstructure and mechanical properties of a 204C2 Cr–Mn austenitic stainless steel which contained 16%Cr, 2%Ni, 9%Mn and 0.083 %C). The 204C2 austenitic stainless steels were cold rolled at multifarious thickness reductions of 10%, 20%, 30%,40% and 50%, which were compared with the solution-treated one. Microstructure of them was investigated by means of optical microscopy, X-ray diffraction technique and scanning electron microscopy. For mechanical properties investigations, hardness and tensile tests were carried out. Results shows that the cold rolling reduction induced the martensitic transformation (γ→α ́) in the structure of the austenitic stainless steel. With the increase of the rolling reduction, the amount of strain-induced martensite increased gradually. Hardness, ultimate tensile strength and yield strength increased with the incremental rolling reduction in 204C2 stainless steels, while the elongation decreased. At the thickness reduction of 50%, the specimen obtained best strength and hardness. Hardness of 204C2 stain steel reached 679HV. Ultimate tensile strength reached 1721 MPa. Yield strength reached 1496 MPa.


2014 ◽  
Vol 936 ◽  
pp. 1796-1800
Author(s):  
Peng Dang ◽  
Xiao Wei Zhang ◽  
Yun Wang ◽  
Qing Zhang ◽  
Chang Liang Li

The influence of annealing temperature on the microstructure, mechanical properties and corrosion resistant of cold rolling zirconium sheet were studied in the manuscript. The experimental results shown that the tensile strength and yield strength of zirconium sheet were decreased and the elongationwas raised with the raising of annealing temperature from 500 °C to 580 °C. The recrystallization are not happened in zirconium sheet at the annealing temperature of 500 °C. Zirconium sheet complete recrystallized and the strength and elongation get a well match at the annealing temperature of 540°C. Zirconium sheet also complete recrystallized at the annealing temperature of 580°C but the crystalline grain has the tendency of growing. The annealing temperature has no effect on the corrosion resistant of zirconium sheet.


Author(s):  
Honggang Zhang ◽  
Jinhui Wang ◽  
Hongbin Ma ◽  
Yuan Yuan ◽  
Yongfeng Li ◽  
...  

Abstract The improvement of mechanical properties and the microstructure evolution through adding Sc to AZ61magnesium alloy were studied. The results indicated that the Mg17Al12 phase in the extruded AZ61 alloy was mainly distributed around the sub-structured and fine deformed grains, resulting in the nonuniform microstructure. The addition of Sc could effectively suppress the band-like precipitation of Mg17Al12 phase and improve the uniformity of microstructure. The grain sizes of the extruded alloys showed a trend of first decreasing and then increasing with the increase of Sc, which was mainly attributed to the secondary phase. The AZ61-0.5Sc alloy exhibited the best mechanical properties, its ultimate tensile strength and yield strength were 14.8MPa and 40.8MPa higher than those of the extruded AZ61 alloy, respectively, which was ascribed to the fine grains and abundant secondary phase in the alloy.


2016 ◽  
Vol 838-839 ◽  
pp. 392-397 ◽  
Author(s):  
Pavel Kusakin ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev ◽  
Dmitri Molodov

The influence of thermo-mechanical treatment consisting of cold rolling followed by recrystallization annealing on the grain size and mechanical properties of a high-Mn TWIP steel was studied. An Fe-23Mn-0.3C-1.5Al TWIP steel (wt. %) was subjected to extensive cold rolling with a reduction of 80% (true strain of ∼1.6) and then annealed in the temperature interval ranging from 400 to 900 °C during 20 minutes. Recovery processes took place below 500 °C, partial recrystallization was evident at ~550°C and fully recrystallized structure evolved after annealing at 600 °C and higher. The static recovery resulted in a slight decrease in the yield strength from 1400 MPa to 1250 MPa and the ultimate tensile strength from 1540 MPa to 1400 MPa whereas the total elongation of 4% did not changed. The recrystallization development led to a drastic drop of strength and an increase in ductility. The yield strength of 225 MPa, the ultimate tensile strength of 700 MPa and the total elongation of 79% was obtained after annealing at 900 °C. Correspondingly, the grain size increased from 0.2 μm to 6.2 μm with increase in anneal temperature from 550 to 900°C.


2009 ◽  
Vol 282 ◽  
pp. 9-16
Author(s):  
M.N. Mungole ◽  
M. Surender ◽  
R. Balasubramaniam ◽  
S. Bhargava

9Cr-1Mo ferritic steel samples containing 0.2 and 0.5 wt % silicon in 40 % cold rolled state were recrystallize-annealed at 1100, 1200 and 1300 K. The grain growth and mechanical properties after recrystallization-annealing for 20 hr to 100 hr were investigated. No significant grain growth was observed even after 100 hr annealing at 1100 and 1200 K. The recrystallization-annealing at 1200 K resulted grains smaller in size than those at 1100 K. Annealing at 1300 K exhibited the enhanced grain growth with decorative microstructures. Initial annealing after cold rolling at 1100 K exhibited low hardness which further increased with annealing temperature. Annealing at 1100 K for 20 hrs exhibited low yield strength and ultimate tensile strength compared to those of as received samples. However, for 100 hrs annealing these properties remained nearly constant for 0.2 Si composition and increased marginally for 0.5 Si composition. Recrystallization-annealing exhibited improved ductility for both the compositions.


2007 ◽  
Vol 544-545 ◽  
pp. 407-410 ◽  
Author(s):  
Jae Seol Lee ◽  
Hyeon Taek Son ◽  
Young Kyun Kim ◽  
Ik Hyun Oh ◽  
Chang Seog Kang ◽  
...  

The aims of this study ares to investigate the microstructure evolution of AZ31 Mg alloys with normal rolling and different speeds rolling during hot rolling affects microstructure, texture and mechanical properties of AZ31 Mg alloy. In the microstructures of as-rolled both samples, twins are clearly apparent, small and recrystallized grains are visible along some grain boundary and twinned regions. The tensile strength and yield strength of DSR sample were slightly higher than that of NR sample. Also, in the case of the NR sample, tensile strength indicated different values to the rolling directions. From this result, NR sample compared to DSR sample strongly indicated to the plastic anisotropy tendency. Therefore, it is noted that DSR sample could be presented to the good formability, comparing to the NR sample. DSR samples deformed at 473K and 523K could be perfectly formed, indicating the potential application of the DSR process to improve formability of the Mg alloys at warm temperatures.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 644
Author(s):  
Wenyan Zhang ◽  
Hua Zhang ◽  
Lifei Wang ◽  
Jianfeng Fan ◽  
Xia Li ◽  
...  

AZ31 magnesium alloy sheets were prepared by low-speed extrusion at different temperatures, i.e., 350 °C, 400 °C, and 450 °C. The microstructure evolution and mechanical properties of extruded AZ31 magnesium alloy sheets were studied. Results indicate that the low-speed extrusion obviously improved the microstructure of magnesium alloys. As the extrusion temperature decreased, the grain size for the produced AZ31 magnesium alloy sheets decreased, and the (0001) basal texture intensity of the extruded sheets increased. The yield strength and tensile strength of the extruded sheets greatly increased as the extrusion temperature decreased. The AZ31 magnesium alloy sheet prepared by low-speed extrusion at 350 °C exhibited the finest grain size and the best mechanical properties. The average grain size, yield strength, tensile strength, and elongation of the extruded sheet prepared by low-speed extrusion at 350 °C were ~2.7 μm, ~226 MPa, ~353 MPa, and ~16.7%, respectively. These properties indicate the excellent mechanical properties of the extruded sheets prepared by low-speed extrusion. The grain refinement effect and mechanical properties of the extruded sheets produced in this work were obviously superior to those of magnesium alloys prepared using traditional extrusion or rolling methods reported in other related studies.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4230
Author(s):  
Tianhao Gong ◽  
Junhui Dong ◽  
Zhiming Shi ◽  
Xinba Yaer ◽  
Huimin Liu

This paper addresses the effects of Ce-rich mischmetal on the microstructure evolution of a 5182 aluminum alloy during annealing and rolling processes. The Ce-rich mischmetal was added to an as-cast 5182 aluminum alloy in an induction furnace, and this was followed by homogenized annealing at 450 °C for 24 h and a rolling operation. The microstructure evolution and mechanical properties’ analysis of the 5182 Al alloy were characterized. The results show that the Ce-rich mischmetal could modify the microstructure, refine the α-Al grains, break the network distribution of Mg2Si phases, and prevent Cr and Si atoms from diffusing into the Al6(Mn, Fe) phase in the as-cast 5182 Al alloys. Ce-rich mischmetal elements were also found to refine the Al6(Mn, Fe) phase after cold rolling. Then, the refined Al6(Mn, Fe) particles inhibited the growth of recrystallization grains to refine them from 10.01 to 7.18 μm after cold rolling. Consequently, the tensile strength of the cold-rolled 5182 Al alloy increased from 414.65 to 454.34 MPa through cell-size strengthening, dislocation density strengthening, and particle strengthening. The tensile strength of the recrystallization annealed 5182 Al alloy was increased from 322.16 to 342.73 MPa through grain refinement strengthening, and this alloy was more stable after the recrystallization annealing temperature.


2019 ◽  
Vol 5 (2) ◽  
pp. 36-40
Author(s):  
Sunardi Klaten

Steel plate making can be produced by hot and cold rolling method. To obtain the optimal results, the production on the cold rolling mill (CRM) must be carried out continuously. This CRM is equipped with a flash butt welding machine to connect between one plate and anothers. The purpose of this research is to determine the effect of thickness reduction on mechanical properties of steel JIS 3141. The method used in this study is experimental, namely mechanical properties testing at weld area, heat affected zone (HAZ) and base material. The thickness reductions used in this research are 0%, 69,78%, 71,56% and 73,33%. The material characteristics observed were hardness, tensile strength, yield strength, elaongation and corrosion rate. From this study it is known that the thickness reduction 73.33% resulted the best mechanical properties. The values ​​of hardness, tensile strength, yield strength and corrosion rate were 82.26 HRB, 644 N / mm2, 501 N / mm2 and 1.3844 mpy, respectively.


Sign in / Sign up

Export Citation Format

Share Document