Microstructure and Mechanical Properties of Al-Li Alloy 2397-T87 Rolled Plate

2014 ◽  
Vol 788 ◽  
pp. 249-257
Author(s):  
Chun Ping Fan ◽  
Zi Qiao Zheng ◽  
Min Jia ◽  
Ji Fa Zhong ◽  
Bin Cheng

The microstructure, tensile property and fracture toughness of Al-Li alloy 2397-T87 rolled plate were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, tensile and plane-strain fracture toughness tests. The results show that a pronounced texture variation through the plate thickness was found. Near the surface, Goss texture dominated. While in the center of the plate, typical β fiber texture and a scattering of cube texture were observed. And the subsurface layer exhibited a very weak texture. From the center to the subsurface, the fraction of β fiber texture and cube texture decreased. In contrast, the fraction of shear type texture reaching the maximum in subsurface layer increased. The tensile properties in different layers along the thickness direction were inhomogeneous. The strengths near the surface were lower than those in the center. And the through-thickness strength properties variation in the rolling direction was more remarkable than that in the long transverse direction. In the same thickness layer, the fracture toughness and the strengths were anisotropic. The strengths in the rolling direction were higher than those in the long transverse direction and the short transverse direction, and the strengths in the short transverse direction were the lowest. The fracture toughness in L-T orientation was the highest, followed by that in T-L orientation, and the fracture toughness in S-L orientation was the lowest.

2019 ◽  
Vol 222 ◽  
pp. 106711
Author(s):  
M.A. Beltrán-Zúñiga ◽  
J.L. González-Velázquez ◽  
D.I. Rivas-López ◽  
F. Hernández-Santiago ◽  
H.J. Dorantes-Rosales ◽  
...  

2000 ◽  
Vol 646 ◽  
Author(s):  
Arno Bartels ◽  
Wolfram Schillinger ◽  
Anita Chatterjee ◽  
Helmut Clemens

ABSTRACTIn hot rolled Ti-46.5at%Al-4at%(Cr,Nb,Ta,B) sheets a strong modified cube texture is found. The c-axes of the tetragonal unit cells in the grains are aligned with the transverse direction of the sheets. This texture causes an anisotropy of the creep resistance which is improved in transverse direction. Heat treatments with different subsequent cooling rates were performed in order to obtain lamellar microstructures with a different spacing of lamellae. Creep experiments exhibit an increase of the creep resistance which is highest after fast cooling. The texture measurements show no longer an alignment of c-axes after the heat treatment in the α-phase field, but a weak {110}-fiber texture in rolling direction occurs which causes a small improvement of the creep resistance in rolling direction. However, the creep resistance of the lamellar microstructure is more determined by the morphology than by the texture.


2018 ◽  
Vol 941 ◽  
pp. 1529-1534
Author(s):  
Ni Tian ◽  
Qi Long Liu ◽  
Zi Yan Zhao ◽  
Gang Zhao ◽  
Kun Liu

The microstructure of Al-1.01Mg-1.11Si-0.38Cu-0.69Mn aluminum alloy plate hot-rolled from homogenization and homogenization-free ingots were investigated by optical microscopy and scanning electron microscopy assisted with energy dispersive spectroscopy (SEM/EDS). The results showed that there are 3 main kinds of constituents such as Mg2Si, AlCuMgSi and AlFeMnSi in the as-cast Al-1.01Mg-1.11Si-0.38Cu-0.69Mn aluminum alloy ingot. After homogenization treated at 545°C for 24h, the black Mg2Si and the white bright AlCuMgSi particles in the ingot dissolved into matrix, but the grey AlFeMnSi phase partly dissolved, contracted into sphere and become coarse, many ultrafine dispersoids appear in the dendritic arms. The constituents in the plates hot-rolled from the homogenization and homogenization-free ingots are both distributed as broken chains along the rolling direction. However, compared with the particles configuration in the plate that hot-rolled from homogenization ingot, the particles in the plate that hot-rolled from the homogenization-free ingot are finer, more numerous and more homogenous, and with insufficient recrystallization when the plates are solution treated at 545°C for 2 h and then water quenched.


2016 ◽  
Vol 879 ◽  
pp. 2014-2019
Author(s):  
Osamu Umezawa ◽  
Norimitsu Koga

Unalloyed titanium was rolled with 20% reduction in each pass at 293 K using a cross rolling mill, where the upper and lower rolling axes were skewed each other at an angle of 0, 5 or 10 degree with parallel position. Multi-pass flat-rolling was carried out without any lubricants up to the true strain of 1, where two kinds of rolling directions such as tandem (uni-direction for all passes) and reverse (opposite direction in every passes) were adopted. The strain of specimens was increased proportionally as higher passes regardless of the rolling conditions. The transverse direction (TD) split deformation texture in titanium was generally developed under the cross angle of 0 degree. In the present strips of tandem, a main orientation was identified as (-12-18)[10-10]. In the case of tandem with the cross angle of 5 degree, a fiber texture was developed along (-12-18). That is the reason why a rotation in the rolling direction (RD) was overlapped. In the case of reverse with the cross angle of 5 degree, the main orientation was separated into [10-10] and [2-311] that were corresponded to TD and RD splits, respectively.


2007 ◽  
Vol 345-346 ◽  
pp. 77-80
Author(s):  
Jae Seol Lee ◽  
Hyeon Taek Son ◽  
Young Kyun Kim ◽  
Ki Yong Lee ◽  
Hyoung Mo Kim ◽  
...  

In this study, we try to investigate the asymmetric rolling process affects microstructure, texture and formability of AZ31 Mg sheet. The deformation twins are clearly apparent, small and recrystallized grains are visible along some grain boundary and twinned regions in the as-rolled both samples. The symmetrically rolled sample tended to show peak inclined to the rolling direction. On the other hand, the asymmetrically rolled sample tended to show peak slightly inclined to the transverse direction. From the pole figure observation by EBSD, the intensity decrease of basal fiber texture after asymmetric rolling should be attributed to the severe shear strain induced during asymmetric process. The Erichsen value was measured to be 6.5 for asymmetrically rolled sample and 5.2 for symmetrically rolled sample.


2007 ◽  
Vol 558-559 ◽  
pp. 229-234 ◽  
Author(s):  
Su Hyeon Kim ◽  
Seung Zeon Han ◽  
Chang Joo Kim ◽  
Soon Young Ok ◽  
In Youb Hwang ◽  
...  

Copper foils cold rolled up to 92% reduction exhibited a low intensity of the β-fiber texture and a high intensity of the cube and RD (rolling direction)-rotated cube components. After annealing, the recrystallization texture of the foils could be characterized by the mixture of the cube and the S components. An initial strong cube texture with a large grain size might remain a less developed rolling texture component, cube or RD-rotated cube, which would be the source of the S component in the recrystallization texture.


2011 ◽  
Vol 690 ◽  
pp. 57-60 ◽  
Author(s):  
K.P. Rao ◽  
Y.V.R.K. Prasad ◽  
K. Suresh

Forging of a rib-web shape in rolled AZ31B magnesium alloy was conducted in the transverse direction at speeds of 0.01-10 mm s-1 in the temperature range 300-500 °C with the objective of validating the flow anisotropy. The finite element programme DEFORM was used to simulate the forging process to obtain the local values of strain and strain rate. Forgings done along the transverse direction at temperatures higher than 400 °C resulted in a symmetrical cup-shape while those done at lower temperatures exhibited an elliptical boat-shape with the major axis coinciding with the rolling direction and the minor axis aligning with the normal direction. This anisotropy of flow was due to the strong basal texture in the rolled plate and the dominance of prismatic slip at lower temperatures. At higher temperatures, pyramidal slip dominates along with cross- slip as the recovery mechanism, which reinstates the symmetry of flow by destroying the initial texture.


2007 ◽  
Vol 544-545 ◽  
pp. 271-274 ◽  
Author(s):  
Han Sol Kim ◽  
Won Yong Kim

This work describes the effect of microstructures on elastic modulus in Ti-26Nb-xSi alloy (x=0.5~1.5at.%) prepared by arc melting, cold rolling and recrystallization heat treatment. OM observation and x-ray diffraction analysis revealed that the microstructure of as-quenched sample appeared to mixture appearance consisting of mostly bcc-structured β phase and small amount of orthorhombic-structured α″ phase. After cold rolling, elongated structure parallel to the rolling direction was observed, and equiaxed structure with the average grain size of about 20~30μm was developed for the sample after recrystallization heat treatment. In as-quenched sample randomly distributed feature of pole figure was characterized without showing a specific texture component. In cold-rolled sample α-fiber, γ-fiber and rotated cube texture components were detected. After recrystallization heat treatment the intensity of α-fiber texture component was markedly decreased, while the rotated cube component becomes sharpened and γ-fiber component remains relatively unchanged. The elastic modulus increased by cold rolling and then decreased by recrystallization over the entire chemical composition range investigated. The variation of elastic modulus values was interpreted in terms of changes in texture components depending on thermomechanical processing.


Alloy Digest ◽  
2014 ◽  
Vol 63 (7) ◽  

Abstract XAR 400 (No. 1.8714) is a wear-resistant structural steel as heavy plate that is normalized or normalized rolled plate. XAR (extra abrasion resistant) steels are solutions for applications where wear is a key factor. This datasheet provides information on composition, hardness, and tensile properties as well as fracture toughness. It also includes information on wear resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-704. Producer or source: ThyssenKrupp Steel Europe AG.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1022
Author(s):  
Jae Hyung Kim ◽  
Taekyung Lee ◽  
Chong Soo Lee

This work investigated the microstructural effect on stretch flangeability of ferrite–martensite dual-phase (DP) steels. Three types of DP steels with various martensitic structures were prepared for the research: fibrous martensite in water-quenched (WQ) sample, chained martensite in air-quenched (AQ) sample, and coarse martensite in step-quenched (SQ) sample. The WQ specimen exhibited the highest mechanical strength and hole expansion ratio compared to the AQ and SQ samples despite their similar fraction of martensite. Such a result was explained in view of uniform distribution of fine martensite and high density of geometrically necessary dislocations in the WQ specimen. Meanwhile, most cracks initiated at either rolling or transverse direction during the stretch flangeability test regardless of the martensitic morphology. It was attributed to the highest average normal anisotropy in the direction of 45° to rolling direction.


Sign in / Sign up

Export Citation Format

Share Document