scholarly journals Properties of Latex Polymer Modified Mortars Reinforced with Waste Bamboo Fibers from Construction Waste

Buildings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 149 ◽  
Author(s):  
Banjo Akinyemi ◽  
Temidayo Omoniyi

This study evaluated the properties of latex modified cement mortars from ordinary paints which were reinforced with treated bamboo fibers from construction waste. Fiber variations of 0, 0.5, 1 and 1.5% at 10% of the weight of cement were utilized. Mechanical properties were determined according to standards; similarly, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to analyze the microstructural and elemental properties of the samples. The experimental results revealed that the addition of 1.5% bamboo fibers and 10% latex solution produced excellent mechanical properties. This was as a result of improved fiber adhesion to the matrix through pre-treatment, coupled with the contributed high strength from the latex paint modified mortars. The micrograph showed that latex precipitated in the voids and on the surface of the bamboo fibers as well as gels of calcium silicate hydrates which contributed to the observed improvement in strength of the tested samples.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fakhim Babak ◽  
Hassani Abolfazl ◽  
Rashidi Alimorad ◽  
Ghodousi Parviz

We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.


2014 ◽  
Vol 711 ◽  
pp. 158-161
Author(s):  
Xia Zhang ◽  
Cong Ke Wang ◽  
Rui Zhang ◽  
Chuan Wei Du ◽  
Guo Zhong Li

In this article, the influence of the churning technology on the average diameter of xonotlite particle and the micro-structure of xonotlite particle during the hydrothermal synthesis progress of the heat insulating material of xonotlite were researched. The influence of fiber adding process on the strength and density of calcium silicate insulation material was studied. The complexity and the macro mechanical properties of the fiber dispersed in the matrix with different fiber adding way were discussed. The microstructure of xonotlite was observed and analyzed by scanning electron microscope and the related mechanisms were studied.


2011 ◽  
Vol 197-198 ◽  
pp. 1100-1103
Author(s):  
Jian Li

A polyurethane/clay (PU/clay) composite was synthesized. The microstructure of the composite was examined by scanning electron microscopy. The impact properties of the composite were characterized by impact testing. The study on the structure of the composite showed that clays could be dispersed in the polymer matrix well apart from a few of clusters. The results from mechanical analysis indicated that the impact properties of the composite were increased greatly in comparison with pure polyurethane. The investigation on the mechanical properties showed that the impact strength could be obviously increased by adding 20 wt% (by weight) clay to the matrix.


2018 ◽  
Vol 877 ◽  
pp. 50-53 ◽  
Author(s):  
Vinayashree ◽  
R. Shobha

Aluminium composites are in predominant use due to their lower weight and high strength among the MMC’s. Aluminium 6061 is selected as matrix and E-glass fiber is selected as reinforcement. Fabrication of composite is done by stir casting method. Each fabrication carries the E-glass reinforcement content varied from 2% to 10%. The present article attempts to evaluate the mechanical properties of E-glass fibre reinforced composite and study the effect of reinforcement on the matrix alloy through mechanical properties. When compared to ascast mechanical properties the UTS has increased from 74.28 N/sq mm to 146.8 N/sq mm for a composite at 6% E-glass. The hardness of as-cast has also increased from 22 RHB to 43 RHB at 6% E-glass and the wear of composite has exhibited a decreasing tend with increase in reinforcement content along the sliding distance. The results are analyzed in certain depth in the current paper. The mechanical properties of composites have improved with the increase in the weigh percentage of glass fiber in the aluminium matrix.


2021 ◽  
Vol 315 ◽  
pp. 37-42
Author(s):  
Hai Long Liao ◽  
Li Hua Zhan ◽  
Yuan Gao ◽  
Xue Ying Chen ◽  
Ming Hui Huang

2195 Al-Li alloy is famous for high strength, excellent fatigue strength and good stress corrosion resistance, which is widely used in the manufacture of high-performance aerospace components. The aim of this study is to validate how the stress relaxation aging behavior effect on the mechanical properties of 2195 Al-Li alloy. Through mechanical property test, the research was found that the performance after stress relaxation aging is higher than artificial aging (AA). In addition, the analysis of scanning electron microscopy SEM and TEM revealed that dislocations should be introduced by the stress relaxation aging process, which is more conducive to the precipitation of the T1 phase and strengthened the material with prolong ageing time. The results show that stress relaxation aging can significantly promote the precipitation of the T1. Therefore, this paper sheds new light on how SRA can improve mechanical properties and that SRA make better improve the distribution of precipitates in the grain boundary.


2011 ◽  
Vol 20 (4) ◽  
pp. 096369351102000 ◽  
Author(s):  
Recep Çalin ◽  
Pul Muharrem ◽  
Ramazan Çitak ◽  
Ulvi Şeker

In this study, Al- MgO metal matrix composites (MMC) were produced with 5 %, 10 % and 15 % reinforcement- volume (R-V) ratios by the melt stirring method. In the production of composites 99.5 % pure Al was used as the matrix and MgO powders with the particle size of −105 μm were used as the reinforcement. For every R-V ratio; stirring was made at 500 rev/min at 750°C liquid matrix temperature for 4 minutes and the samples were cooled under normal atmosphere. Then hardness and fracture strengths of the samples were determined and their micro structures were evaluated by using Scanning Electron Microscope (SEM). In general, it was observed that the reinforcement exhibited a homogeneous distribution in horizontal direction. But there is a slight inhomogeneity in vertical direction. It was determined that the increase in the R-V ratio increased the porosity and also the hardness. As for the fracture strength, the highest strength was obtained with the 5 % MgO reinforced sample.


2020 ◽  
Vol 10 (18) ◽  
pp. 6455
Author(s):  
Marianela Ripani ◽  
Hernán Xargay ◽  
Ignacio Iriarte ◽  
Kevin Bernardo ◽  
Antonio Caggiano ◽  
...  

High temperature effect on cement-based composites, such as concrete or mortars, represents one of the most important damaging process that may drastically affect the mechanical and durability characteristics of structures. In this paper, the results of an experimental campaign on cement mortars submitted to high temperatures are reported and discussed. Particularly, two mixtures (i.e., Normal (MNS) and High Strength Mortar (MHS)) having different water-to-binder ratios were designed and evaluated in order to investigate the incidence of both the mortar composition and the effects of thermal treatments on their physical and mechanical properties. Mortar specimens were thermally treated in an electrical furnace, being submitted to the action of temperatures ranging from 100 to 600 °C. After that and for each mortar quality and considered temperature, including the room temperature case of 20 °C, water absorption was measured by following a capillary water absorption test. Furthermore, uniaxial compression, splitting tensile and three-points bending tests were performed under residual conditions. A comparative analysis of the progressive damage caused by temperature on physical and mechanical properties of the considered mortars types is presented. On one hand, increasing temperatures produced increasing water absorption coefficients, evidencing the effect of thermal damages which may cause an increase in the mortars accessible porosity. However, under these circumstances, the internal porosity structure of lower w/b ratio mixtures results much more thermally-damaged than those of MNS. On the other hand, strengths suffered a progressive degradation due to temperature rises. While at low to medium temperatures, strength loss resulted similar for both mortar types, at higher temperature, MNS presented a relatively greater strength loss than that of MHS. The action of temperature also caused in all cases a decrease of Young’s Modulus and an increase in the strain corresponding to peak load. However, MHS showed a much more brittle behavior in comparison with that of MNS, for all temperature cases. Finally, the obtained results demonstrated that mortar quality cannot be neglected when the action of temperature is considered, being the final material performance dependent on the physical properties which, in turn, mainly depend on the mixture proportioning.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2459-2465 ◽  
Author(s):  
R. J. T. LIN ◽  
D. BHATTACHARYYA ◽  
S. FAKIROV

The concept of microfibrillar composite (MFC) has been used to create a new type of polymer composites, in which the reinforcing microfibrils are loaded with carbon nanotubes (CNT). Polyamide 66 (PA66) has been melt blended with polypropylene in a twin screw extruder with and without CNT, and thereafter cold drawn to create a fibrillar state as well as to align the CNT in the PA66 microfibrils. The drawn bristles were compression moulded at 180°C to prepare MFC plates. The scanning electron microscope (SEM) observations indicate near perfect distribution of CNT in the reinforcing PA66 microfibrils. Although the fibrillated PA66 is able to improve the tensile stiffness and strength as expected from the MFC structure, the incorporation of CNT does not exhibit any further enhancing effect. It rather adversely affects the mechanical properties due to poor interface adhesion between the matrix and the reinforcing microfibrils with the presence of CNT, as demonstrated by SEM. However, the resulting highly aligned CNT within the MFC are expected to affect the physical and functional properties of these composites.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 874
Author(s):  
Andrey A. Tsarkov ◽  
Vladislav Yu. Zadorozhnyy ◽  
Alexey N. Solonin ◽  
Dmitri V. Louzguine-Luzgin

High-strength crystalline/amorphous composites materials based on (Ti-Ni)-(Cu-Zr) system were developed. The optimal concentrations of additional alloying elements Al, Fe, and Cr were obtained. Structural investigations were carried out using X-ray diffraction equipment (XRD) and scanning electron microscope (SEM) with an energy-dispersive X-ray module (EDX). It was found that additives of aluminum and chromium up to 5 at% dissolve well into the solid matrix solution of the NiTi phase. At a concentration of 5 at%, the precipitation of the unfavorable NiTi2 phase occurs, which, as a result, leads to a dramatic decrease in ductility. Iron dissolves very well in the solid solution of the matrix phase due to chemical affinity with nickel. The addition of iron does not cause the precipitation of the NiTi2 phase in the concentration range of 0–8 at%, but with an increase in concentration, this leads to a decrease in the mechanical properties of the alloy. The mechanical behavior of alloys was studied in compression test conditions on a universal testing machine. The developed alloys have a good combination of strength and ductility due to their dual-phase structure. It was shown that additional alloying elements lead to a complete suppression of the martensitic transformation in the alloys.


2012 ◽  
Vol 627 ◽  
pp. 321-324 ◽  
Author(s):  
Ching Wen Lou ◽  
An Pang Chen ◽  
Jan Yi Lin ◽  
Mei Chen Lin ◽  
Jin Mao Chen ◽  
...  

The high-strength polyester fiber is a kind of chemical fiber that is rapidly developed and widely applied. With development of technology, the demands for polyester fiber are becoming more and more. Furthermore, the high-strength polyester fiber, used to reinforce the matrix, has higher modulus and strength than commercial polyester fiber. In this research, the 15D polyester fiber, the low melting polyester and the high-strength polyester fiber were used to manufacture the high-strength PET compound nonwoven fabrics by nonwoven processing. Afterwards, the mechanical properties of the PET compound nonwoven was measured both at cross direction and machine direction.


Sign in / Sign up

Export Citation Format

Share Document