Comparison of Stress-Strain Diagrams in Different Age of the Cement Matrix for Textile Reinforced Concrete

2015 ◽  
Vol 824 ◽  
pp. 155-159 ◽  
Author(s):  
Filip Vogel ◽  
Ondřej Holčapek ◽  
Petr Konvalinka

This article deals with cement matrix for the textile reinforced concrete. It is necessary to know maximum of the mechanical properties of cement matrix for using textile reinforced concrete. The main topic of this article is to determine stress-strain diagrams at various age of the cement matrix. The compressive strength of the cement matrix was determined by using cube specimens (100 x 100 x 100 mm). The cement matrix, steel fibre reinforced cement matrix and ordinary concrete C 30/37 were tested at age 12 and 18 hours and 1, 7, 28 and 45 days. Cubes were tested in one-axial press. Loading of cubes was controlled by increase of deformation. Speed of loading was 0.008 mm/s. Time, load force and deformation were recorded for determination stress strain diagrams. The results of the experimental program and stress-strain diagrams were compared with each other in conclusion of this article.

2015 ◽  
Vol 824 ◽  
pp. 197-200
Author(s):  
Jan Machovec ◽  
Filip Vogel ◽  
Petr Konvalinka

This article is focused on state of knowledge about experimental testing of uniaxial tension strength of specimens from cement-based composites. We searched for various types of experimental testing of tensile strength, shapes of specimens or type of reinforcement. There is our own experimental program at the end of this article. Our aim is to find the best way to test steel fibre reinforced cement matrix for textile reinforced concrete in oneaxial tension. Textile reinforced concrete has many advantages (e.g.: no covering layer, higher ductility) and may be used instead of common steel reinforced concrete or as a method to repair old structures (e.g.: to bind columns).


2016 ◽  
Vol 827 ◽  
pp. 227-230
Author(s):  
Ondřej Holčapek

Presented contribution deals with using textile reinforced concrete containing newly invented high strength cement matrix for strengthening concrete structures. The issue of old concrete ́s surface interaction with newly applied slim layer of textile reinforced concrete is investigated and verified by bending test. Water to binder ration under 0.3, maximum size of used silica sand 1.2 mm, and compressive strength over 100 MPa characterize used fine grain cement matrix. Over 12 months old beams with dimension 100 x 100 x 400 mm made from ordinary concrete were used for strengthening during performed experimental program. Strengthening took place on bending side. Different number (1, 3 and 5) of textile fabrics made from alkali-resistant glass (surface density 275 g/m2) was applied into slim layer of cement composite. Increasing number of used fabrics leads to different failure mode due shearing force action.


2016 ◽  
Vol 827 ◽  
pp. 271-274
Author(s):  
Filip Vogel ◽  
Jan Machovec ◽  
Petr Konvalinka

This article deals with experimental testing of the textile reinforced concrete samples. The main topic of this article is determination ultimate tensile strength of the textile reinforced concrete. The testing samples were in form “dogbone” for good fixing in testing machine. There are 12 samples totally in experimental program. One type cement matrix and three types (difference in their weight 125 g/m2, 275 g/m2 and 500 g/m2) glass textile reinforcement were used for the production of samples. The textile reinforcement is made of alkali-resistant glass fibres. Three samples were made of cement matrix and nine samples were made of cement matrix reinforced textile reinforcement (three of each type of reinforcement). The samples were tested in special attachment in one-axial tensile. Experimental tests were controlled by speed of rate of deformation (0.0005 m/min). The textile reinforcement has very good influence to behaviour of the textile reinforced concrete in tensile stress.


2014 ◽  
Vol 1054 ◽  
pp. 99-103 ◽  
Author(s):  
Filip Vogel ◽  
Ondřej Holčapek ◽  
Petr Konvalinka

This article deals with cement matrix for textile reinforced concrete. The main topic of this article is study of the development of the mechanical properties of the cement matrix. It was studied cube compressive strength and tensile strength in bending. The cement matrix has a similar composition as high performance concrete. Commonly used concrete was made to compare with the cement matrix. The cubes and prisms were made for the experimental program. The mechanical properties were studied at the age 12, 15, 18 and 21 hours and 1, 2, 3, 7, 14, 21 and 28 days.


2015 ◽  
Vol 824 ◽  
pp. 161-165
Author(s):  
Ondřej Holčapek

This contribution deals with interesting and progressive curing method applied to fresh concrete matrix for textile reinforced concrete production. The application of high pressure 0.3 MPa and temperature 130 °C in 100 % humidity environment for 4 hours was performed. Cement matrix and steel fibers reinforced cement matrix has been investigated. The goal of this research is to quantified compressive strength, flexure strength, bulk density and dynamic modulus of elasticity of both mixtures. These parameters were investigated after hydrothermal curing process at the ages 6, 12, 15, 18, 21 and 24 hour after first contact of water with cement. All parameters were investigated on specimens 40 x 40 x 160 mm3 and the destructive tests were controlled by increase of deformation. Special curing condition led to an increase of the compressive strength by more than 10 % in case of cement matrix, and by more than 40 % in case of fiber reinforced cement matrix.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2127
Author(s):  
Richard Fürst ◽  
Eliška Fürst ◽  
Tomáš Vlach ◽  
Jakub Řepka ◽  
Marek Pokorný ◽  
...  

Textile-reinforced concrete (TRC) is a material consisting of high-performance concrete (HPC) and tensile reinforcement comprised of carbon roving with epoxy resin matrix. However, the problem of low epoxy resin resistance at higher temperatures persists. In this work, an alternative to the epoxy resin matrix, a non-combustible cement suspension (cement milk) which has proven stability at elevated temperatures, was evaluated. In the first part of the work, microscopic research was carried out to determine the distribution of particle sizes in the cement suspension. Subsequently, five series of plate samples differing in the type of cement and the method of textile reinforcement saturation were designed and prepared. Mechanical experiments (four-point bending tests) were carried out to verify the properties of each sample type. It was found that the highest efficiency of carbon roving saturation was achieved by using finer ground cement (CEM 52.5) and the pressure saturation method. Moreover, this solution also exhibited the best results in the four-point bending test. Finally, the use of CEM 52.5 in the cement matrix appears to be a feasible variant for TRC constructions that could overcome problems with its low temperature resistance.


2020 ◽  
Vol 10 (2) ◽  
pp. 576
Author(s):  
Tine Tysmans ◽  
Jan Wastiels

This special issue presents the latest advances in the field of Textile-Reinforced Cement Composites, including Textile-Reinforced Concrete (TRC), Textile-Reinforced Mortar (TRM), Fabric-Reinforced Cementitious Matrix (FRCM), etc. These composite materials distinguish themselves from other fibre reinforced concrete materials by their strain-hardening behaviour under tensile loading. This Special Issue is composed of 14 papers covering new insights in structural and material engineering. The papers include investigations on the level of the fibre reinforcement system as well as on the level of the composites, investigating their impact and fatigue behaviour, durability and fire behaviour. Both strengthening of existing structures and development of new structural systems such as lightweight sandwich systems are presented, and analysis and design methods are discussed. This Special Issue demonstrates the broadness and intensity of the ongoing advancements in the field of Textile-Reinforced Cement composites and the importance of several future research directions.


2014 ◽  
Vol 982 ◽  
pp. 59-62 ◽  
Author(s):  
Filip Vogel

This article discusses about the textile reinforced concrete. The textile reinforced concrete is a new material with great possibilities for modern construction. The textile reinforced concrete consists of cement matrix and textile reinforcement of high strength fibers. This combination of cement matrix and textile reinforcement is an innovative combination of materials for use in the construction. The main advantage of the textile reinforced concrete is a high tensile strength and ductile behavior. The textile reinforced concrete is corrosion resistant. With these mechanical properties can be used textile reinforced concrete in modern construction.


Buildings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 68
Author(s):  
Egodawaththa Ralalage Kanishka Chandrathilaka ◽  
Shanaka Kristombu Baduge ◽  
Priyan Mendis ◽  
Petikirige Sadeep Madhushan Thilakarathna

Textile Reinforced Concrete (TRC) is a prefabricated novel lightweight high-performance composite material that can be used as a load-bearing or non-load-bearing component of prefabricated buildings. Making TRC with Ultra-High-Strength Concrete (UHSC) (≥100 MPa) can be considered as a potential improvement method to further enhance its properties. This paper investigated the performance of Ultra-High-Strength Textile Reinforced Concrete (UHSTRC) under flexural loading. A detailed experimental program was conducted to investigate the behavior of UHSC on TRC. In the experimental program, a sudden drop in load was observed when the first crack appeared in the UHSTRC. A detailed analytical program was developed to describe and understand such behavior of UHSTRC found in experiments. The analytical program was found to be in good agreement with the experimental results and it was used to carry out an extensive parametric study covering the effects of the number of textile layers, textile material, textile mesh density, and UHSTRC thickness on the performance of UHSTRC. Using a high number of textile layers in thin UHSTRC was found to be more effective than using high-thickness UHSTRC. The high modulus textile layers effectively increase the performance of UHSTRC.


2017 ◽  
Vol 36 (23) ◽  
pp. 1712-1726 ◽  
Author(s):  
Dejun Liu ◽  
Hongwei Huang ◽  
Jianping Zuo ◽  
Kang Duan ◽  
Yadong Xue ◽  
...  

For the eccentric compression structures which cannot be strengthened by wrap method, this paper presents an experimental and numerical study on flexural strengthening by applying textile reinforced concrete at the tensile face. Seven short columns were constructed and tested under eccentric load. One of the columns did not receive any strengthening and was used as the control column, whereas the rest six were externally upgraded by textile-reinforced concrete layers. The main parameters taken into account covered: (a) type of mortar, (b) preload level, and (c) number of textile-reinforced concrete layers. Besides the experimental program, a numerical investigation utilizing non-linear finite element analysis was carried out and a good agreement was obtained between the experimental and numerical results. Further, the numerical analysis was extended to additional cases to deepen the understanding of flexural-enhancing mechanism . It is concluded that textile-reinforced concrete substantially increases the flexural capacity of the eccentric compression columns; the more the textile layer, the greater the gain. However, the preload has an apparently adverse influence on the strengthening effectiveness, as it causes the strain loss of the textile; the bigger the preload level, the more the loss.


Sign in / Sign up

Export Citation Format

Share Document