Impact of Plasticizers on Technological Properties of Gypsum

2016 ◽  
Vol 865 ◽  
pp. 130-134 ◽  
Author(s):  
Dušan Dolák ◽  
Karel Dvořák

Sulphate binders based on gypsum are widely used in building industry. This research work was focused on testing the influence of Melflux plasticizers on the final properties of the gypsum mixture. The aim was to determine the correct concentration of the plasticizer considering workability and improvement of mechanical properties, especially the compressive strength. Different concentrations of plasticizers were tested in mixture of alfa and beta plaster. Each batch was created as paste of normal consistency to create accurate comparison. The results of experiment show significant improvements of mechanical strength of the hardened mixture while maintaining same consistency. This knowledge can be utilized in the design of high-strength sulphate binders.

2021 ◽  
Vol 7 (1) ◽  
pp. eabc5442
Author(s):  
Dianyu Dong ◽  
Caroline Tsao ◽  
Hsiang-Chieh Hung ◽  
Fanglian Yao ◽  
Chenjue Tang ◽  
...  

The high mechanical strength and long-term resistance to the fibrous capsule formation are two major challenges for implantable materials. Unfortunately, these two distinct properties do not come together and instead compromise each other. Here, we report a unique class of materials by integrating two weak zwitterionic hydrogels into an elastomer-like high-strength pure zwitterionic hydrogel via a “swelling” and “locking” mechanism. These zwitterionic-elastomeric-networked (ZEN) hydrogels are further shown to efficaciously resist the fibrous capsule formation upon implantation in mice for up to 1 year. Such materials with both high mechanical properties and long-term fibrous capsule resistance have never been achieved before. This work not only demonstrates a class of durable and fibrous capsule–resistant materials but also provides design principles for zwitterionic elastomeric hydrogels.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4223
Author(s):  
Po-Sung Chen ◽  
Yu-Chin Liao ◽  
Yen-Ting Lin ◽  
Pei-Hua Tsai ◽  
Jason S. C. Jang ◽  
...  

Most high-entropy alloys and medium-entropy alloys (MEAs) possess outstanding mechanical properties. In this study, a series of lightweight nonequiatomic Al50–Ti–Cr–Mn–V MEAs with a dual phase were produced through arc melting and drop casting. These cast alloys were composed of body-centered cubic and face-centered cubic phases. The density of all investigated MEAs was less than 5 g/cm3 in order to meet energy and transportation industry requirements. The effect of each element on the microstructure evolution and mechanical properties of these MEAs was investigated. All the MEAs demonstrated outstanding compressive strength, with no fractures observed after a compressive strain of 20%. Following the fine-tuning of the alloy composition, the Al50Ti20Cr10Mn15V5 MEA exhibited the most compressive strength (~1800 MPa) and ductility (~34%). A significant improvement in the mechanical compressive properties was achieved (strength of ~2000 MPa, strain of ~40%) after annealing (at 1000 °C for 0.5 h) and oil-quenching. With its extremely high specific compressive strength (452 MPa·g/cm3) and ductility, the lightweight Al50Ti20Cr10Mn15V5 MEA demonstrates good potential for energy or transportation applications in the future.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2010 ◽  
Vol 168-170 ◽  
pp. 564-569
Author(s):  
Guang Lin Yuan ◽  
Jing Wei Zhang ◽  
Jian Wen Chen ◽  
Dan Yu Zhu

This paper makes an experimental study of mechanical properties of high-strength pumpcrete under fire, and the effects of heating rate, heating temperature and cooling mode on the residual compressive strength(RCS) of high-strength pumpcrete are investigated. The results show that under air cooling, the strength deterioration speed of high-strength concrete after high temperature increases with the increase of concrete strength grade. Also, the higher heating temperature is, the lower residual compressive strength value is. At the same heating rate (10°C/min), the residual compressive strength of C45 concrete after water cooling is a little higher than that after air cooling; but the test results are just the opposite for C55 and C65 concrete. The strength deterioration speed of high-strength concrete after high temperature increases with the increase of heating rate, but not in proportion. And when the heating temperature rises up between 200°C and 500°C, heating rate has the most remarkable effect on the residual compressive strength of concrete. These test results provide scientific proofs for further evaluation and analysis of mechanical properties of reinforced-concrete after exposure to high temperatures.


Author(s):  
Muhammad Armaghan Siffat ◽  
Muhammad Ishfaq ◽  
Afaq Ahmad ◽  
Khalil Ur Rehman ◽  
Fawad Ahmad

This study is supervised to assess the characteristics of the locally available wheat straw ash (WSA) to consume as a substitute to the cement and support in enhancing the mechanical properties of concrete. Initially, after incineration at optimum temperature of 800°C for 0.5, the ash of wheat straw was made up to the desirable level of fineness by passing through it to the several grinding cycles. Subsequently, the X-ray fluorescence (XRF) along with X-ray diffraction (XRD) testing conducted on ash of wheat straw for the evaluation its pozzolanic potential. Finally, the specimens of concrete were made by consuming 10% and 20% percentages of wheat straw ash as a replacement in concrete to conclude its impact on the compressive strength of high strength concrete. The cylinders of steel of dimensions 10cm diameter x 20cm depth were acquired to evaluate the compressive strength of high strength concrete. The relative outcomes of cylinders made of wheat straw ash substitution presented the slight increase in strength values of the concrete. Ultimately, the C-100 blends and WSA aided cement blends were inspected for the rheology of WSA through FTIR spectroscopy along with Thermogravimetric technique. The conclusions authenticate the WSA potential to replace cement in the manufacturing of the high strength concrete.


This paper aimed to investigate the mechanical characteristics of HSC of M60 concrete adding 25% of fly ash to cement and sand and percentage variations of silica fumes 0%,5% and 10% to cement with varying sizes of 10mm,6mm,2mm and powder of granite aggregate with w/c of 0.32. Specimens are tested for compressive strength using 10cm X 10cmX10cm cubes for 7,14,28 days flexural strength was determined by using 10cmX10cmX50cm beam specimens at 28 days and 15cm diameter and 30cm height cylinder specimens at 28 days using super plasticizers of conplast 430 as a water reducing agent. In this paper the experimental set up is made to study the mechanical properties of HSC with and without coarse aggregate with varying sizes as 10mm, 6mm, 2mm and powder. Similarly, the effect of silica fume on HSC by varying its percentages as 0%, 5% and 10% in the mix studied. For all mixes 25% extra fly ash has been added for cement and sand.


2018 ◽  
Vol 199 ◽  
pp. 11005 ◽  
Author(s):  
Wasim Abbass ◽  
M. Iqbal Khan

The high strength concrete exhibits improved compressive strength with drawback of brittle failure due to lack of tensile strength which can be catered by the addition of fibers. The efficient use of fibers with hybridization at macro and micro level can improve mechanical properties of high strength concrete. The effect of hybridization of hooked end steel macro fibers (60 mm) and PVA micro fibers (12 mm) with different dosages was investigated in this research work. The different percentage of steel and PVA were hybridized to find out the best combination of hybridized fibers in high strength concrete. The compressive and flexural properties of high strength concrete along with complete load vs deflection behaviour of hybrid fiber reinforced concrete were investigated. The results revealed that hybridization of macro and micro fibers provided better improvement in flexural performance. It was observed from the results that the hybrid combination of fibers of 1% macro steel fiber and 0.15% micro PVA fibers proved to be the best for enhancement in flexural performance of high strength concrete.


2020 ◽  
Vol 330 ◽  
pp. 01047
Author(s):  
Toufik Boubekeur ◽  
Bensaid Boulekbache ◽  
Mohamed Salhi ◽  
Karim Ezziane ◽  
EL.Hadj Kadri

This paper presents the experimental results of a wide research program, tending to determine the hydration mechanism, mechanical properties and the durability performance of ternary cement containing limestone powder and slag. The limestone powder increase the hydration at early ages inducing a high strength at, but it can reduce the later strength due to the dilution effect. On the other hands, Slag (S) contributes to increase the compressive strength at later ages. Hence, at medium blended cement (OPC-LP-S) with better performance could be produced. Results show at later age the Slag is very effective in producing ternary blended cements with similar on higher compressive strength than the ordinary Portland cement at 28 and 90 days. For durability, the incorporation of the slag into the cement containing limestone powder improves remarkably resistance to attack by acids and sulfates and it has been found that the durability of the cements never depends on the mechanical strength.


2014 ◽  
Vol 931-932 ◽  
pp. 57-62
Author(s):  
Rapeephun Dangtungee ◽  
Rapeeporn Srisuk ◽  
Suchart Siengchin

This research work was carried out on the production of rice bran/poly (lactic acid) (PLA) composites. The composition during the batch molding process included rice bran, PLA, glycerol, and magnesium stearate (mold released agent). Afterwards, the composition was molded by bio-compression at temperature of 170°C for 5 min, and a pressure range of 50-100 kg/cm3. The result showed that the composition of rice bran, PLA, and glycerol could be used in the formation of food packaging. Also the mechanical properties, such as compressive strength and hardness, were investigated. It could be concluded that the most appropriate formulation of rice bran packaging was 5 phr PLA and 3 phr glycerol and 2 phr magnesium stearate. Moreover, FTIR results indicated the non-toxic nature of this method of food packaging.


2012 ◽  
Vol 174-177 ◽  
pp. 1406-1409 ◽  
Author(s):  
Hong Fang Li ◽  
Li Guo ◽  
Yi Xia

The mechanical properties of concretes containing super fine mineral admixtures such as limestone powder, titanium slag, lithium slag and silica ash have been investigated by compression tests. It was found that 10% limestone powder used in cocncrete is beneficial to compressive strength, it reaches 111Mpa after 28 days curing. The optimum mixing amounts of titanium slag, lithium slag and silica ash are 20%, 10% and 10%, respectively. All their 28d compressive strengths exceed 100MPa, reach super-early and super-high strength concrete level. By introducing mineral admixures into concrete, the cement consumption in concrete can be greatly reduced.


Sign in / Sign up

Export Citation Format

Share Document