Effects of Extrusion Ratio on Microstructures and Properties of Al-Cu-Mg-Ag-Ce-Er Alloy Wires

2017 ◽  
Vol 898 ◽  
pp. 191-198
Author(s):  
Yu Peng Xu ◽  
Ze Sheng Ji

The Al-Cu-Mg-Ag-Ce-Er alloy wires with different extrusion ratio (λ=12, 25, 50, 100) were produced by hot extrusion at 450oC. The effects of extrusion ratio on the microstructures, tensile strength and elongation of Al-Cu-Mg-Ag-Ce-Er alloy wires were researched by means of OM, SEM, TEM and mechanical test.The results show that with the extrusion ratio increasing, the average grain size decreased from 83μm to 42μm, the Al2Cu, Al8Cu4Ce and Al8Cu4Er phases was broken gradually, and the homogeneousdistribution about these second-phases in the alloy wires increased. The tensile strength increased from 366MPa to 459MPa with extrusion ratio, and the elongation initially decreased and then increased with the increase of extrusion ratio. Dynamic recrystallization for Al-Cu-Mg-Ag-Ce-Er alloy occurred at different extrusion ratios. Withincreasing of extrusion ratio, the main nucleation mechanism of dynamic recrystallization changed from the sub-grain coalescence at lower extrusion ratioto the acceleration of second-phases for nucleation at higher extrusion ratio.

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2437
Author(s):  
Guanshi Zhang ◽  
Zhimin Zhang ◽  
Yingze Meng ◽  
Zhaoming Yan ◽  
Xin Che ◽  
...  

The effects of repetitive upsetting extrusion under different starting temperatures on the microstructure and texture of GWZK124 alloy were investigated. The results clearly showed that the particles and second phases induced dynamic recrystallization (DRX), which can be explained by the particle-stimulated nucleation (PSN) mechanism. It was shown that grain refinement during repetitive upsetting extrusion (RUE) is dominated by a complicated combination of continuous dynamic recrystallization and discontinuous dynamic recrystallization. The RUEed alloys under different starting temperatures exhibited a bimodal microstructure comprising fine DRXed grains with weak texture and coarse deformed grains with strong texture. The DRXed grains could weaken the texture. As the RUE starting temperature decreased, the average grain size increased and the volume fraction of DRXed grains decreased.


2006 ◽  
Vol 519-521 ◽  
pp. 1479-1484 ◽  
Author(s):  
Hiroki Adachi ◽  
Kozo Osamura ◽  
Jun Kusui ◽  
Shigeru Okaniwa

The effect of extrusion rate and ratio on the Al3Zr induced dynamic recrystallization (DRX) that occurs during hot extrusion of RS-P/M Al-Zn-Mg-Cu-Zr alloys was investigated. An increase in the logarithm of extrusion rate promoted DRX and lead to a monotonic increase in the number of fine grains. Although DRX was also promoted and the grain size reduced by an increase in extrusion ratio from 10 to 20, the DRX behavior hardly changed, even when the extrusion ratio exceeded 20. However, with increasing extrusion ratio, the width of fibrous grain, i.e., the unrecrystallized region, decreased and the tensile strength increased to 879 MPa. When the extrusion rate and ratio exceeded 54 mm/min and 20, respectively, a marked grain coarsening occurred upon solution treatment, and the tensile strength tended to decrease, because of the high dislocation density induced by hot extrusion. By annealing at 563 K before solution treatment, it was possible to prevent grain coarsening, and thus prevent the strength decrease.


2014 ◽  
Vol 540 ◽  
pp. 356-359
Author(s):  
Hui Du ◽  
Zun Jie Wei

As-cast Mg-2Zn-1Mn-xCa (x=0.5 and 1.5 wt.%) alloys are extruded a 553K with an extrusion ratio of 11.3:1 as biomedical materials. The microstructures of the extruded Mg-2Zn-1Mn-xCa alloys are investigated. Microstructures show that the dynamic recrystallization (DRX) occurs after the extruded process. The grain size of the extruded Mg-2Zn-1Mn-1.5Ca alloy is significantly refined compared to that of Mg-2Zn-1Mn-0.5Ca alloy. The tensile strength increases and the elongation decreases with an increase of Ca content. The improvement of tensile strength can be attibuted to the pesence of Mg2Ca phase. However, Mg2Ca phase is bristle, which results in the elongation reducing.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 990-995 ◽  
Author(s):  
GUOQING CHEN ◽  
JUNHUI SONG ◽  
XUESONG FU ◽  
YUXIAN ZHAO ◽  
WENLONG ZHOU

This paper describes the effect of hot extrusion on the microstructure and mechanical properties of electromagnetic continuous cast (EMC) AZ31 alloy. The microstructure, mechanical properties and fracture surfaces of AZ31 alloy before and after extrusion were investigated. The results demonstrate that extrusion processing gives rise to a strong basal texture. The grains are significantly refined and the average grain size of localized fine grain area is 2μm. Compared with EMC ingots, as-extruded specimens have much finer grain size and more uniform microstructure, and the second phase ( Mg 17 Al 12) becomes smaller and distributes more uniformly. The mechanical properties of the deformed AZ31 were improved after hot-extrusion. When the extrusion ratio was 10, the yield strength, ultimate tensile strength and reduction in cross-sectional area of as-extruded AZ31 alloy were 248MPa, 306MPa and 28.44%, which were respectively enhanced by 78.4%, 41% and 45.25%, compared with those of as-cast samples. With the increase of extrusion ratio, the grain refining effect was more significant and the microstructure was more uniform. The yield strength, ultimate tensile strength and reduction in cross-sectional area increased obviously with increasing the extrusion ratio. The observation on fracture surfaces demonstrates that the fracture mode changes from ductile-brittle fracture to ductile fracture after extrusion.


2013 ◽  
Vol 477-478 ◽  
pp. 1307-1315 ◽  
Author(s):  
Yuan Hui Weng ◽  
Yuan Xuan Liu ◽  
Tan Wei ◽  
Wei Wen Zhang ◽  
Zong Qiang Luo

The microstructures and mechanical properties of the Cu-17Ni-3Al-X alloy hot-extruded at different extrusion ratios were investigated by tensile and hardness testing, optical microscope (OM) and scanning electronic microscope.The results show that the dynamic re-crystallization occurs when the extrusion ratio λ increases from 8 to 25. The grain size and the second phases of the extruded alloys are obviously finer than that of the as-cast alloy. The mechanical properties of the extruded alloys are improved remarkably. The alloy with the λ of 25 obtained the tensile strength of 1025MPa, Brinell Hardness of 312HB and elongation of 10.0% which is 35%, 14% and 355%, respectively, higher than that of the as-cast alloy.


2020 ◽  
Vol 993 ◽  
pp. 307-312
Author(s):  
Li Fu ◽  
Wen Xin Hu ◽  
Qi Chi Le ◽  
Zheng Jia

A new type of AZ31-1.3Ca-1.0Sm-0.3La alloy was obtained in this study by adding Ca, Sm and La to AZ31 alloy. Detailed analysis results on second phases showed that Al2Ca phases, Al2Sm phases with two kinds of morphologies formed in as-cast AZ31-1.3Ca-1.0Sm-0.3La alloy besides Mg17Al12 phases, and La atoms mainly dissolved in Al2Ca/Sm phases. The average grain size of as-cast AZ31-1.3Ca-1.0Sm-0.3La alloys was 212 μm and the grain sizes distributions were uniform. After the hot extrusion, the average grain size decreased to 5.4 μm and the grain sizes distributions were uneven. The base texture of as-extruded AZ31-1.3Ca-1.0Sm-0.3La alloy was strong, and the maximum density value was 3.25. The yield strength, ultimate tensile strength and elongation of as-extruded AZ31-1.3Ca-1.0Sm-0.3La alloy was 216 MPa, 280 MPa and 16% at RT, and 145 MPa, 188 MPa and 42% at 150°C, respectively, which are much higher than those of the common MB2 alloy both at the room temperature and 150 °C.


2016 ◽  
Vol 849 ◽  
pp. 203-208 ◽  
Author(s):  
Gui Hua Su ◽  
Xue Ran Liu ◽  
Zhan Yi Cao

Mg-1Mn-0.6Ce-3Y alloy was prepared by metal mould casting method. The as-cast ingot was homogenized and then hot-extruded by an extrusion ratio of 16:1 at 380 °C. Microstructure and mechanical properties of the as-cast and hot-extruded samples were investigated. The results showed that the as-cast sample mainly consisted of α-Mg, Mg12Ce, and Mg24Y5 phases. The average grain size of the sample homogenized at 380 °C was about 100μm, and it was greatly refined to about 6μm by dynamic recrystallization for the hot-extruded sample. The ultimate tensile strength, 0.2% yield strength and elongation of the hot-extruded sample were 244 MPa, 178 MPa and 37.5%, respectively. They were enhanced by 82%, 197% and 400%, correspondingly compared with those of the as-cast sample. The improvement of the strengths was attributed to the grain refinement, breakup of the precipitates and increase of the dislocation density.


2013 ◽  
Vol 765 ◽  
pp. 491-495 ◽  
Author(s):  
Petra Maier ◽  
Asta Richter ◽  
Gerhard Tober ◽  
Norbert Hort

In this study Mg10GdxNd alloys are investigated by nanoindentation hardness measurements in several material conditions. Mg10GdxNd alloys with an average coarse grain size of 500 µm were cast by permanent mold direct chill casting. Hardness values vary due to the inhomogeneous microstructure formed during the solidification process consisting of dendrite arms with preferred orientation direction. The effect of dissolving particles during solution heat treatment (T4) and isothermal ageing (T6) was observed to a different extent depending on Nd content. Isothermal ageing promotes a duplex microstructure of coarse β1phase precipitates and regions containing much finer precipitates. Post processing by direct extrusion changes the microstructure dramatically to an average grain size of 15 µm. The microstructure after hot extrusion shows segregation of precipitates in the extrusion direction. Near this alignment of second phases hardness and plastic deformation differ from precipitates enriched in RE elements due to depleted regions of solid solution around them. This phenomenon is known from alloying element segregation to grain boundaries. Depending on the amount and location of second phases in the as-cast microstructure and degree of cold work, recrystallization leads to an inhomogeneous microstructure, consisting of fine grains (15 µm) and very fine grains, where second phases act as nuclei during the recrystallization process. Furthermore, mechanical testing (fatigue) causes an increase in dislocation density by work hardening and extensive twinning near the fractured surface. Here the hardening effect interferes with grain size strengthening.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


2013 ◽  
Vol 275-277 ◽  
pp. 1833-1837
Author(s):  
Ke Lu Wang ◽  
Shi Qiang Lu ◽  
Xin Li ◽  
Xian Juan Dong

A Johnson-Mehl-Avrami-Kolmogorov (JMAK)-model was established for dynamic recrystallization in hot deformation process of 52100 steel. The effects of hot deformation temperature, true strain and strain rate on the microstructural evolution of the steel were physically studied by using Gleeble-1500 thermo-mechanical simulator and the experimental results were used for validation of the JMAK-model. Through simulation and experiment, it is found that the predicted results of DRX volume fraction, DRX grain size and average grain size are in good agreement with the experimental ones.


Sign in / Sign up

Export Citation Format

Share Document