Preparation and Characterization of As-Cast and As-Extruded Mg-1Mn-0.6Ce-3Y Alloy

2016 ◽  
Vol 849 ◽  
pp. 203-208 ◽  
Author(s):  
Gui Hua Su ◽  
Xue Ran Liu ◽  
Zhan Yi Cao

Mg-1Mn-0.6Ce-3Y alloy was prepared by metal mould casting method. The as-cast ingot was homogenized and then hot-extruded by an extrusion ratio of 16:1 at 380 °C. Microstructure and mechanical properties of the as-cast and hot-extruded samples were investigated. The results showed that the as-cast sample mainly consisted of α-Mg, Mg12Ce, and Mg24Y5 phases. The average grain size of the sample homogenized at 380 °C was about 100μm, and it was greatly refined to about 6μm by dynamic recrystallization for the hot-extruded sample. The ultimate tensile strength, 0.2% yield strength and elongation of the hot-extruded sample were 244 MPa, 178 MPa and 37.5%, respectively. They were enhanced by 82%, 197% and 400%, correspondingly compared with those of the as-cast sample. The improvement of the strengths was attributed to the grain refinement, breakup of the precipitates and increase of the dislocation density.

2011 ◽  
Vol 284-286 ◽  
pp. 1559-1563 ◽  
Author(s):  
Jian Li Wang ◽  
Jian Ping Li ◽  
Li Min Wang ◽  
Li Dong Wang

Mg-5Al-0.3Mn-1Ce alloy was prepared by metal mould casting method. The as-cast ingot was homogenized and hot-rolled with total thickness reduction of 61% after four passes. Texture, microstructure and mechanical properties of the studied alloy were investigated. Results showed that the as-cast sample was mainly composed of a-Mg, Mg17Al12and Al11Ce3phases. Average grain size of the as-cast sample was about 500 μm. After hot-rolling, average grain size was greatly refined to about 20 μm. Further more, the long acicular Al11Ce3phase was smashed to small pieces. Tensile test results demonstrated that ultimate tensile strength and yield strength of the hot-rolled sample were improved by 65.2% and 165% respectively compared with those of the as-cast sample. Strength enhancement was attributed to grain refining strengthening and dislocation strengthening mechanisms.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


2021 ◽  
Vol 21 (9) ◽  
pp. 4897-4901
Author(s):  
Hyo-Sang Yoo ◽  
Yong-Ho Kim ◽  
Hyeon-Taek Son

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al–Zn–Cu–Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al–Zn–Cu–Mg–xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.


2017 ◽  
Vol 898 ◽  
pp. 124-130 ◽  
Author(s):  
Shu Min Xu ◽  
Xin Ying Teng ◽  
Xing Jing Ge ◽  
Jin Yang Zhang

In this paper, the microstructure and mechanical properties of the as-cast and heat treatment of Mg-Zn-Nd alloy was investigated. The alloy was manufactured by a conventional casting method, and then subjected to a heat treatment. The results showed that the microstructure of as-cast alloy was comprised of α-Mg matrix and Mg12Nd phase. With increase of Nd content, the grain size gradually decreased from 25.38 μm to 9.82 μm. The ultimate tensile strength and elongation at room temperature of the Mg94Zn2Nd4 alloy can be reached to 219.63 MPa and 5.31%. After heat treatment, part of the second phase dissolved into the magnesium matrix and the grain size became a little larger than that of the as-cast. The ultimate tensile strength was declined by about 2.5%, and the elongation was increased to 5.47%.


2011 ◽  
Vol 197-198 ◽  
pp. 655-661
Author(s):  
Ze Bin Yang ◽  
Ding Yi Zhu ◽  
Wei Fa Yi ◽  
Shu Mei Lin ◽  
Cheng Mei Du

We investigate the influence of grain size on mechanical properties in a Fe-9Ni-12Mn-2.5Si-1.0C TWIP steel by unidirectional tensile. Meanwhile the microstructures of the TWIP steel were observed and analyzed by optical microscope (OM) and transmission electron microscope (TEM). The experimental results show that the TWIP steel’s yield strength and tensile strength decrease with the increasing of grain size, whereas the plasticity increases with it. When the average grain size reaches to 27μm, the tensile strength is 1080MPa, the elongation percentage is 77%, and the strength-plasticity product achieves the 83160MPa•%. Steel’s strain hardening rate can be changed from three-stage to four-stage with the increasing of grain sizes, the areas of strain hardening by twin deformation mechanism are expanded. Through the microstructure observation we found that, coarse-grained TWIP steel conducts to twinning formation, the high density twins can increase the alloy’s ductility by splitting the grain.


2016 ◽  
Vol 61 (2) ◽  
pp. 475-480
Author(s):  
K. Bolanowski

Abstract The paper analyzes the influence of different heat treatment processes on the mechanical properties of low-alloy high-strength steel denoted by Polish Standard (PN) as 10MnVNb6. One of the findings is that, after aging, the mechanical properties of rolled steel are high: the yield strength may reach > 600 MPa, and the ultimate tensile strength is > 700 MPa. These properties are largely dependent on the grain size and dispersion of the strengthening phase in the ferrite matrix. Aging applied after hot rolling contributes to a considerable rise in the yield strength and ultimate tensile strength. The process of normalization causes a decrease in the average grain size and coalescence (reduction of dispersion) of the strengthening phase. When 10MnVNb6 steel was aged after normalization, there was not a complete recovery in its strength properties.


2018 ◽  
Vol 37 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Hansong Xue ◽  
Xinyu Li ◽  
Weina Zhang ◽  
Zhihui Xing ◽  
Jinsong Rao ◽  
...  

AbstractThe effects of Bi on the microstructure and mechanical properties of AZ80-2Sn alloy were investigated. The results show that the addition of Bi within the as-cast AZ80-2Sn alloy promotes the formation of Mg3Bi2 phase, which can refine the grains and make the eutectic phases discontinuous. The addition of 0.5 % Bi within the as-extruded AZ80-2Sn alloy, the average grain size decreases to 12 μm and the fine granular Mg17Al12 and Mg3Bi2 phases are dispersed in the α-Mg matrix. With an increase in Bi content, the Mg17Al12 and Mg3Bi2 phases become coarsened and the grain size increases. The as-extruded AZ80-2Sn-0.5 %Bi alloy has the optimal properties, and the ultimate tensile strength, yield strength and elongation are 379.6 MPa, 247.1 MPa and 14.8 %, respectively.


2011 ◽  
Vol 682 ◽  
pp. 49-54
Author(s):  
Bin Chen ◽  
Chen Lu ◽  
Dong Liang Lin ◽  
Xiao Qin Zeng

The Mg96Y3Zn1 alloy processed by equal channel angular pressing has been investigated. It was found that the Mg96Y3Zn1 alloy processed by ECAP obtained ultrafine grains and exhibits excellent mechanical properties. After ECAP, the average grain size of Mg96Y3Zn1 alloy refined to about 400 nm. The highest strengths with yield strength of 381.45MPa and ultimate tensile strength of 438.33MPa were obtained after 2 passes at 623K. It was found that cracks were preferentially initiated and propagated in the interior of X-phase during the tensile test. As a result, the elongation of alloy is decreased with pass number increasing.


2007 ◽  
Vol 22 (9) ◽  
pp. 2423-2428 ◽  
Author(s):  
H.L. Zhao ◽  
S.K. Guan ◽  
F.Y. Zheng

The effects of Sr and B addition on the microstructure and mechanical properties of AZ91 alloy were studied. The results of this work show that a small amount of Sr addition to AZ91 refined the grain size. The highest tensile strength was obtained from the alloy with the optimal composition of 0.5% Sr and 0.09% B added, in which the average grain size was 42 μm. The tensile strength and elongation of the AZ91–0.5%Sr–0.09%B alloy were 151 MPa and 1.62%, respectively. Some needle-shaped Al4Sr particles distributed mainly at grain boundaries have been observed in the alloys with Sr and B additions. The fluidity is improved significantly, and the solidification range decreased by adding Sr and B. The liquidus of AZ91 alloy decreased markedly with the addition of Sr and B, but the solidus hardly changed. Therefore, the solidification range can be decreased, which will improve the die-casting properties.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1313
Author(s):  
Oleg Kashin ◽  
Konstantin Krukovskii ◽  
Aleksandr Lotkov ◽  
Victor Grishkov

The paper analyzes the microstructure and mechanical properties of Ti49.8Ni50.2 alloy (at.%) under uniaxial tension at room temperature after isothermal abc pressing to true strains e = 0.29 − 8.44 at T = 723 K. The analysis shows that as the true strain e is increased, the grain–subgrain structure of the alloy is gradually refined. This leads to an increase in its yield stress σy and strain hardening coefficient θ = dσ/dε at linear stage III of its tensile stress–strain curve according to the Hall–Petch relation. However, the ultimate tensile strength remains invariant to such refinement. The possible mechanism is proposed to explain why the ultimate tensile strength can remain invariant to the average grains size (dav). It is assumed that the sharp increase of the ultimate tensile strength σUTS begins when (dav) is less than the critical average grain size (dav)cr. In our opinion, for the investigated alloy (dav)cr ≈ 0.5 µm. In our study, the attained average grain size is larger the critical one. The main idea of the mechanism is next. In alloys with an average grain size (dav) less than the critical one, a higher external stress is required for the nucleation and propagation of the main crack.


Sign in / Sign up

Export Citation Format

Share Document