Adsorption of the harmful hormone ethinyl estradiol inside hydrophobic cavities of CTA+ intercalated montmorillonite

2016 ◽  
Vol 74 (3) ◽  
pp. 663-671 ◽  
Author(s):  
A. E. Burgos ◽  
Tatiana A. Ribeiro-Santos ◽  
Rochel M. Lago

Hydrophobic cavities produced by cetyltrimethylammonium cation (CTA+) exchanged and trapped in the interlayer space of montmorillonite were used to remove the harmful hormone contaminant ethinyl estradiol (EE2) from water. X-ray diffraction, thermogravimetry/derivative thermogravimetry, elemental analysis (carbon, hydrogen, nitrogen), Fourier transform infrared, scanning electron microscopy/energy dispersive spectroscopy, Brunauer–Emmett–Teller and contact angle analyses showed that the intercalation of 9, 16 and 34 wt% CTA+ in the montmorillonite resulted in the d001 expansion from 1.37 to 1.58, 2.09 and 2.18 nm, respectively. EE2 adsorption experiments showed that the original clay montmorillonite does not remove EE2 from water whereas the intercalated composites showed high efficiency with adsorption capacities of 4.3, 8.8 and 7.3 mg g−1 for M9CTA+, M16CTA+ and M34CTA+, respectively. Moreover, experiments with montmorillonite simply impregnated with cetyltrimethylammonium bromide showed that the intercalation of CTA+ to form the hydrophobic cavity is very important for the adsorption properties. Simple solvent extraction can be used to remove the adsorbed EE2 without significant loss of CTA+, which allows the recovery and reuse of the adsorbent for at least five times.

2005 ◽  
Vol 23 (5) ◽  
pp. 407-416 ◽  
Author(s):  
Xianjia Peng ◽  
Zhaokun Luan ◽  
Hongmei Zhang ◽  
Binghui Tian ◽  
Bin Fan

A novel organobentonite was prepared by modifying bentonite with poly(dimethyldiallylammonium chloride) (PDMDAAC), a harmless and cost-effective type of polycation. Zeta potential and X-ray diffraction measurements suggest that PDMDAAC was intercalated into the bentonite interlayer space. PDMDAAC—bentonite has been found to be effective for the removal of p-nitrophenol with a removal rate of 81.4% being achieved. The adsorption process was pH-dependent and was slightly decreased by the Ca2+ and Mg2+ ions co-existing in the solution. A dual-phase adsorption mechanism was suggested for the process. The adsorbents obtained from the regeneration of PDMDAAC—bentonite still exhibit good adsorption capacities.


2000 ◽  
Vol 628 ◽  
Author(s):  
Sophie Besson ◽  
Catherine Jacquiod ◽  
Thierry Gacoin ◽  
André Naudon ◽  
Christian Ricolleau ◽  
...  

ABSTRACTA microstructural study on surfactant templated silica films is performed by coupling traditional X-Ray Diffraction (XRD) and Transmission Electronic Microscopy (TEM) to Grazing Incidence Small Angle X-Ray Scattering (GISAXS). By this method it is shown that spin-coating of silicate solutions with cationic surfactant cetyltrimethylammonium bromide (CTAB) as a templating agent provides 3D hexagonal structure (space group P63/mmc) that is no longer compatible with the often described hexagonal arrangement of tubular micelles but rather with an hexagonal arrangement of spherical micelles. The extent of the hexagonal ordering and the texture can be optimized in films by varying the composition of the solution.


Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 89 ◽  
Author(s):  
Jolanta Prywer ◽  
Lesław Sieroń ◽  
Agnieszka Czylkowska

In this article, we report the crystallization of struvite in sodium metasilicate gel by single diffusion gel growth technique. The obtained crystals have a very rich morphology displaying 18 faces. In this study, the habit and morphology of the obtained struvite crystals are analyzed. The crystals were examined and identified as pure struvite by single X-ray diffraction (XRD). The orthorhombic polar noncentrosymmetric space group Pmn21 was identified. The structure of the crystal was determined at a temperature of 90 K. Our research indicates a lack of polymorphism, resulting from the temperature lowering to 90 K, which has not been previously reported. The determined unit cell parameters are as follows a = 6.9650(2) Å, b = 6.1165(2) Å, c = 11.2056(3) Å. The structure of struvite is presented here with a residual factor R1 = 1.2% at 0.80 Å resolution. We also present thermoanalytical study of struvite using thermal analysis techniques such as thermogravimetry (TG), derivative thermogravimetry (DTG) and differential thermal analysis (DTA).


2014 ◽  
Vol 68 (8) ◽  
Author(s):  
Selvakumar Dhanasingh ◽  
Dharmaraj Nallasamy ◽  
Saravanan Padmanapan ◽  
Vinod Padaki

AbstractThe influence of cetyltrimethylammonium bromide and ethylene glycol on the size and dispersion of indium oxide nanoparticles prepared under hydrothermal conditions was investigated. The precursor compound, indium hydroxide, obtained by the hydrothermal method in the absence as well as the presence of cetyltrimethylammonium bromide, was converted to indium oxide by sintering at 400°C. The formation of nanoscale indium oxide upon sintering was ascertained by the characteristic infrared adsorption bands and X-ray diffraction patterns of indium oxide. Transmission electron microscopy and band gap values confirmed that the cetyltrimethylammonium bromide facilitated the formation of indium oxide nanoparticles smaller in size and narrower in distribution than those prepared without the assistance of cetyltrimethylammonium bromide.


2014 ◽  
Vol 894 ◽  
pp. 412-415
Author(s):  
Duangsamorn Morawong ◽  
Atchana Wongchaisuwat ◽  
Ladda Meesuk

Bentonite is a synonymous term of montmorillonite which is a clay mineral consisting of 2 : 1 aluminosilicate layered structure. In this work, a commercial bentonite was used to prepare an intercalation compound [Ca (2,2-bipyridine)3]2+in the interlayer space, by solid-solid reaction, which formation was confirmed by the expansion of the interlayer space of bentonite from 1.5 to 1.8 nm, by powder X-Ray Diffraction technique. The intercalation compound [Ca (2,2-bipyridine)3]2+-bentonite was then used as a sensor to assemble a potentiometric electrode. The electrode gave best response to sulfide ion in terms of Nernstian slope. Precision of measurement, reproducibility and percent recovery were also studied. The electrode could be used to measure sulfide ion in real water samples and gave satisfactory results.


2016 ◽  
Vol 5 (2) ◽  
pp. 144
Author(s):  
Doungmo Giscard ◽  
Théophile Kamgaing ◽  
Ranil Clément Tonleu Temgoua ◽  
Ervice Ymele ◽  
Francis Merlin Melataguia Tchieno ◽  
...  

In this study, sorption properties of a synthesized anionic clay were enhanced by the intercalation of oxalate ions in its interlayer space. The pristine and modified clay materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and thermal analysis. These techniques confirmed the presence of oxalate ions in the interlayer space of the clay. The intercalated clay was then used as a matrix for the sorption in batch mode of nickel ions in aqueous solution. The influence of a number of parameters such as contact time, pH, initial concentration of the analyte and adsorbent dosage were studied. The maximum adsorption of nickel was obtained at pH 6, that is, about 90% Ni2+ removal. The adsorbent/adsorbate equilibrium follows a pseudo-second order kinetics and best matches the Langmuir model. The modified clay was shown to be efficient matrix for the sorption of nickel ions.


2000 ◽  
Vol 33 (6) ◽  
pp. 1351-1359 ◽  
Author(s):  
A. Ben Haj Amara ◽  
H. Ben Rhaiem ◽  
A. Plançon

Nacrite has been intercalated with two polar organic molecules: dimethyl sulfoxide (DMSO) andN-methylacetamide (NMA). The homogeneous nacrite complexes have been studied by X-ray diffraction (XRD) and infrared (IR) spectroscopy. The XRD study is based on a comparison between experimental and calculated patterns. The structures of the intercalated compounds have been determined, including the mutual positions of the layers after intercalation and the positions of the intercalated molecules in the interlayer space. It has been shown that the intercalation process causes not only a swelling of the interlayer space but also a shift in the mutual in-plane positions of the layers. This shift depends on the nature of the intercalated molecules and is related to their shape and the hydrogen bonds which are established with the surrounding surfaces. For a given molecule, the intercalation process is the same for the different polytypes of the kaolinite family. These XRD results are consistent with those of IR spectroscopy.


2022 ◽  
Vol 12 (2) ◽  
pp. 809
Author(s):  
Maxim Rudmin ◽  
Santanu Banerjee ◽  
Boris Makarov ◽  
Kanipa Ibraeva ◽  
Alexander Konstantinov

This research presents the mechanical creation of smart fertilizers from a mixture of smectite and urea in a 3:2 ratio by using the planetary milling technique. The smectite–urea composites show intercalation between urea and mineral, which increases steadily with increasing activation time. A shift of X-Ray Diffraction basal reflections, intensities of Fourier transform infrared spectroscopy (FTIR) peaks, and weight losses in thermogravimetric analysis (TG) document the systematic crystallo-chemical changes of the composites related to nitrogen interaction with activation. Observations of the nanocomposites by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) corroborate the inference. Nitrogen intercalates with smectite in the interlayer space and remains absorbed either within micro-aggregates or on the surface of activated smectites. Soil leaching tests reveal a slower rate of nitrogen than that of traditional urea fertilizers. Different forms of nitrogen within the composites cause their differential release rates to the soil. The formulated nanocomposite fertilizer enhances the quality and quantity of oat yield.


1998 ◽  
Vol 23 (0) ◽  
pp. 09-16
Author(s):  
Marco Aurélio da Silva CARVALHO FILHO ◽  
Massao IONASHIRO

Compounds of cinnamic acid with manganese, zinc and lead have been prepared in aqueous solution. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction and complexometry have been used in the characterization as well as in the study of the thermal stability and interpretation concerning the thermal decomposition.


Author(s):  
Thierry Pauporté ◽  
Daming zheng

Nowadays, overcoming the stability issue of perovskite solar cells (PSCs) while keeping high efficiency has become an urgent need for the future of this technology. By using x-ray diffraction (XRD),...


Sign in / Sign up

Export Citation Format

Share Document