Influence of Physical Fields on Functional Properties of Polymeric Nanocomposites

2019 ◽  
Vol 968 ◽  
pp. 176-182 ◽  
Author(s):  
Petro Savchuk ◽  
Vitalii Kashytskyi ◽  
Victoria Malets ◽  
Dmitro Matrunchyk ◽  
Anastasia Kushniruk

The conditions for the formation of epoxy composite coatings filled with nanodispersed particles of fullerene black are investigated. The efficiency of the use of electromagnetic and ultrasonic radiation for modifying the composition based on the epoxy matrix has been confirmed. The paper describes the optimum composition and mode of formation of epoxy composite materials filled with fullerene black.

2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Andriy Buketov ◽  
Oleksandr Sapronov ◽  
Mykola Brailo ◽  
Danylo Stukhlyak ◽  
Serhii Yakushchenko ◽  
...  

The corrosion resistance and hydroabrasive resistance of the developed epoxy composite coatings are investigated in this paper. The analysis of the penetration index change after τ = 50–150 days of immersion in a water medium and 10% sulfuric acid solution is carried out. The optimal ratio of the modifier and nanodispersed (Si3N4, Al2O3, AlN, and TiN) and fibrous (viscose, polyamide, matka silk, rong, and cashmere) fillers in the epoxy binder is determined. It was allowed to slow down the process of electrochemical reaction on the metal surface. The penetration of aggressive media in such a coating during the time t = 150 days is 0.8–2.8%. It is 1.5–2 times lower than the similar indexes of the initial epoxy matrix. The rational combination of the fibrous filler (wool, acrylic PAN, and cashmere), modifier, and nanodispersed (Si3N4, AlF3, IH, and ZrH) filler in the epoxy binder is found, which allows to provide optimum indexes of wear rate. The wear rate under the action of a hydroabrasive of such a coating is I = 0.20%, which is 4 times lower than the similar indexes of the initial epoxy matrix. The wear mechanism of such coatings is caused by the physical and mechanical processes of microcutting and plastic deformation of the surface layer of the material.


2017 ◽  
Vol 3 (12 (87)) ◽  
pp. 16-22 ◽  
Author(s):  
Vitalii Kashytskyi ◽  
Petro Savchuk ◽  
Viktoria Malets ◽  
Yuliia Herasymiuk ◽  
Serhii Shchehlov

Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
M. M. A. Baig ◽  
M. Abdul Samad

Epoxy composite coating systems generally find their usage in applications such as, fluid handling systems to protect components from corrosive media. However, their use in demanding tribological applications such as, in sliding components of machines, are known to be limited. This is often attributed to their low load bearing capacity combined with poor thermal stability under severe p-v regimes. Researchers have tried to enhance the tribological properties of the epoxy coatings using a combination of several types of micro/nano sized fillers to produce composite or hybrid composite coatings. Hence, this review paper aims to focus on the recent advances made in developing the epoxy coating systems. Special attention would be paid to the types and properties of nano-fillers that have been commonly used to develop these coatings, different dispersion techniques adopted and the effects that each of these fillers (and their combinations) have on the tribological properties of these coatings.


2021 ◽  
Author(s):  
Johannes Essmeister ◽  
M. Josef Taublaender ◽  
Thomas Koch ◽  
D. Alonso Cerrón-Infantes ◽  
Miriam M. Unterlass ◽  
...  

A novel class of fully organic composite materials with well-balanced mechanical properties and improved thermal stability was developed by incorporating highly crystalline, hydrothermally synthesized polyimide microparticles into an epoxy matrix.


2014 ◽  
Vol 918 ◽  
pp. 21-26
Author(s):  
Chen Kang Huang ◽  
Yun Ching Leong

In this study, the transport theorem of phonons and electrons is utilized to create a model to predict the thermal conductivity of composite materials. By observing or assuming the dopant displacement in the matrix, a physical model between dopant and matrix can be built, and the composite material can be divided into several regions. In each region, the phonon or electron scattering caused by boundaries, impurities, or U-processes was taken into account to calculate the thermal conductivity. The model is then used to predict the composite thermal conductivity for several composite materials. It shows a pretty good agreement with previous studies in literatures. Based on the model, some discussions about dopant size and volume fraction are also made.


Sign in / Sign up

Export Citation Format

Share Document