Influence of Rare Earth Elements in Magnesium Alloy - A Mini Review

2020 ◽  
Vol 979 ◽  
pp. 162-166
Author(s):  
N. Sivashanmugam ◽  
K. L. Harikrishna

In recent days, the use of Magnesium and its alloys is preferred in defence, automotive and aerospace industries where large size and complex components are required in light weight. Besides, magnesium alloys are used in computers, electronic devices and biomedical applications. Alloying magnesium with rare earth elements (RE) is used to develop the light alloys for the stated applications at elevated temperature. Rare earth magnesium alloys are having unique properties over other metals, including a high specific strength, low thermal conductivity, good damping capacity and good castability. In this review article, the recent development of rare earth magnesium alloys will be reviewed from the view point of novel alloying designs. It has been revealed that in ternary alloy system Mg-ZN-RE alloy exhibited high strength and ductility. This leads the researchers to investigate Mg-ZN-RE alloy recently.

2007 ◽  
Vol 539-543 ◽  
pp. 1685-1690 ◽  
Author(s):  
Ming Yi Zheng ◽  
Xiao Shi Hu ◽  
Shi Wei Xu ◽  
Xiao Guang Qiao ◽  
Kun Wu ◽  
...  

Equal channel angular pressing (ECAP) was applied to commercial pure magnesium alloy, Mg-1wt%Si alloy and Mg-4.2wt%Zn-0.7wt%Y alloy. With increasing ECAP passes, both tensile strength and ductility of the alloys are increased, which are mainly resulted from the grain refinement. At the same time, for the Mg-Zn-Y alloy with inherent low damping capacity, damping capacity is increased after ECAP passes, however, the damping capacity is still low even after 6-pass ECAP. While for the commercial pure magnesium and Mg-Si alloy with inherent high damping capacity, although the damping capacity is decreased obviously after ECAP, Q-1 is still greater than 0.01. The damping capacity after ECAP processing is mainly influenced by grain size and deformation microstructure. ECAP paves a way for the development of magnesium alloys with high strength and high ductility combined with high damping capacity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Md Ershadul Alam ◽  
Soupitak Pal ◽  
Ray Decker ◽  
Nicholas C. Ferreri ◽  
Marko Knezevic ◽  
...  

Abstract Lightweight, recyclable, and plentiful Mg alloys are receiving increased attention due to an exceptional combination of strength and ductility not possible from pure Mg. Yet, due to their alloying elements, such as rare-earths or aluminum, they are either not economical or biocompatible. Here we present a new rare-earth and aluminum-free magnesium-based alloy, with trace amounts of Zn, Ca, and Mn (≈ 2% by wt.). We show that the dilute alloy exhibits outstanding high strength and high ductility compared to other dilute Mg alloys. By direct comparison with annealed material of the same chemistry and using transmission electron microscopy (TEM), high-resolution TEM (HR-TEM) and atom probe tomography analyses, we show that the high strength can be attributed to a number of very fine, Zn/Ca-containing nanoscale precipitates, along with ultra-fine grains. These findings show that forming a hierarchy of nanometer precipitates from just miniscule amounts of solute can invoke simultaneous high strength and ductility, producing an affordable, biocompatible Mg alloy.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 164
Author(s):  
Kenneth N. Han

Rare earth elements (REEs) have become an important group of metals used in many high-tech industries, including high-strength magnets, plasma TVs, various military applications, and clean and efficient green energy industries [...]


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Jiaheng Li ◽  
Yingbo Zhang ◽  
Xinyu Cao ◽  
Qi Zeng ◽  
Ye Zhuang ◽  
...  

Abstract Aluminum alloys are attractive for a number of applications due to their high specific strength, and developing new compositions is a major goal in the structural materials community. Here, we investigate the Al-Zn-Mg-Cu alloy system (7xxx series) by machine learning-based composition and process optimization. The discovered optimized alloy is compositionally lean with a high ultimate tensile strength of 952 MPa and 6.3% elongation following a cost-effective processing route. We find that the Al8Cu4Y phase in wrought 7xxx-T6 alloys exists in the form of a nanoscale network structure along sub-grain boundaries besides the common irregular-shaped particles. Our study demonstrates the feasibility of using machine learning to search for 7xxx alloys with good mechanical performance.


2016 ◽  
Vol 663 ◽  
pp. 321-331 ◽  
Author(s):  
Hucheng Pan ◽  
Yuping Ren ◽  
He Fu ◽  
Hong Zhao ◽  
Liqing Wang ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 74
Author(s):  
Yu-Chin Liao ◽  
Po-Sung Chen ◽  
Chao-Hsiu Li ◽  
Pei-Hua Tsai ◽  
Jason Jang ◽  
...  

A novel lightweight Al-Ti-Cr-Mn-V medium-entropy alloy (MEA) system was developed using a nonequiatiomic approach and alloys were produced through arc melting and drop casting. These alloys comprised a body-centered cubic (BCC) and face-centered cubic (FCC) dual phase with a density of approximately 4.5 g/cm3. However, the fraction of the BCC phase and morphology of the FCC phase can be controlled by incorporating other elements. The results of compression tests indicated that these Al-Ti-Cr-Mn-V alloys exhibited a prominent compression strength (~1940 MPa) and ductility (~30%). Moreover, homogenized samples maintained a high compression strength of 1900 MPa and similar ductility (30%). Due to the high specific compressive strength (0.433 GPa·g/cm3) and excellent combination of strength and ductility, the cast lightweight Al-Ti-Cr-Mn-V MEAs are a promising alloy system for application in transportation and energy industries.


2007 ◽  
Vol 561-565 ◽  
pp. 191-197 ◽  
Author(s):  
Fu Sheng Pan ◽  
Ming Bo Yang ◽  
Yan Long Ma

The latest research results on new types of magnesium alloys containing strontium or rare earth elements are reviewed. Special attentions are paid to the alloying design, microstructure and properties controlling, the influence of minor addition of Sr and RE on the microstructure and properties of existing magnesium alloys. Some new types of magnesium alloys containing Sr or RE are introduced and discussed.


2010 ◽  
Vol 34-35 ◽  
pp. 1651-1655
Author(s):  
An Ru Wu ◽  
Li Jun Dong ◽  
Wei Guo Gao ◽  
Xiang Ling Zhou

The microstructure and mechanical properties of Mg-6.0%Zn-0.5%Zr (ZK60) and ZK60-2.0%Nd-1.0%Y alloys after extrusion, rolling and then T5 and T6 heat-treatment were investigated. The hardness and tensile strength at T5 and T6 condition were tested. The results show that the mechanical properties of ZK60--2.0%Nd-1.0%Y alloy are superior to that of ZK60 alloy. The hardness of the investigated alloy at T5 condition is higher than at T6. The strengthening of ZK60-2.0%Nd-1.0%Y alloy originates from the interaction of phase and dislocations. The precipitation order of ZK60-2.0%Nd-1.0%Y alloy is GP zone . The magnesium alloy contains rare earth elements with good casting performance, great potential for plastic deformation, high strength, excellent mechanical properties and many other advantages. The magnesium alloy oversaturation solid solution's decomposition process conforms to time the common alloy oversaturation solid solution decomposition order rule, often namely before separating out the equilibrium phase presents some transitional stage the structure, like the GP area, the transition are equal, but the different series magnesium alloy presents the different characteristic, therefore uses the heat treatment method also has big difference [1-5]. In this paper, we will analysis mechanical properties of aging process of testing and microstructure of Mg-6.0% Zn-0.5% Zr-2.0% Nd-1.0% Y alloy , do Research about strengthen the effect of melting and from the product of the relationship on different alloy aging process, and analysis contribution of rare earth elements Nd, Y to alloy strengthen.


2015 ◽  
Vol 47 (1) ◽  
pp. 522-530 ◽  
Author(s):  
Joseph D. Robson ◽  
Sarah J. Haigh ◽  
Bruce Davis ◽  
David Griffiths

Sign in / Sign up

Export Citation Format

Share Document