Investigations on the Hardness Distribution and Microstructure of Friction-Stir-Welded 6082 Aluminum Alloy

2020 ◽  
Vol 993 ◽  
pp. 116-122
Author(s):  
Kun Yuan Gao ◽  
Bo Li ◽  
Yu Sheng Ding ◽  
Hui Huang ◽  
Sheng Ping Wen ◽  
...  

The hardness and microstructure of friction stir welded (FSW) 6082 aluminum alloy joint were investigated by Vickers microhardness test, optical microscopy (OM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The hardness distribution is in a W shape, and from the base metal to the heat affected zone (HAZ) the hardness decreases from 103 HV to 72 HV, then gradually increases to 84 HV at the nugget zone (NZ). The grains of base metal (BM) are elongated and composed of a great quantity of low-angle grain boundaries. The nugget zon was of quite fine recrystallized grains. For the thermomechanical affected zone (TMAZ), the grain size is a little smaller than that of base metal and some low-angle grain boundaries remain. In the heat affected zone, the grain size was similar to that of the base metal. The β'' phase (Mg5Si6) and Al-Mn-Si particles are dispersed in the base metal. . In the heat affected zone, β'' phase transforms to β' phase (Mg9Si5). The hardness distribution in a W-shape was discussed on the basis of grain size, density of low-angle grain boundary and secondary phases.

2013 ◽  
Vol 203-204 ◽  
pp. 258-261 ◽  
Author(s):  
Izabela Kalemba ◽  
Krzysztof Muszka ◽  
Mirosław Wróbel ◽  
Stanislaw Dymek ◽  
Carter Hamilton

This research addresses the EBSD analysis of friction stir welded 7136-T76 aluminum alloy. The objectives of this study were to evaluate the grain size and their shape, character of grain boundaries in the stirred and thermo-mechanically affected zones, both on the advancing and retreating side as well as to investigate changes in the crystallographic texture. Results of texture analysis indicate the complexity of the FSW process. The texture gradually weakens on moving from the thermo-mechanically affected zone toward the weld center. The stirred zone is characterized by very weak texture and is dominated by high angle boundaries. On the other hand, the thermo-mechanically affected zone exhibits a high frequency of low angle boundaries.


2017 ◽  
Vol 17 (2) ◽  
pp. 29-40 ◽  
Author(s):  
M. A. Tashkandi ◽  
J. A. Al-Jarrah ◽  
M. Ibrahim

AbstractThe main aim of this investigation is to produce a welding joint of higher strength than that of base metals. Composite welded joints were produced by friction stir welding process. 6061 aluminum alloy was used as a base metal and alumina particles added to welding zone to form metal matrix composites. The volume fraction of alumina particles incorporated in this study were 2, 4, 6, 8 and 10 vol% were added on both sides of welding line. Also, the alumina particles were pre-mixed with magnesium particles prior being added to the welding zone. Magnesium particles were used to enhance the bonding between the alumina particles and the matrix of 6061 aluminum alloy. Friction stir welded joints containing alumina particles were successfully obtained and it was observed that the strength of these joints was better than that of base metal. Experimental results showed that incorporating volume fraction of alumina particles up to 6 vol% into the welding zone led to higher strength of the composite welded joints as compared to plain welded joints.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3906 ◽  
Author(s):  
Yang Han ◽  
Xiaoqing Jiang ◽  
Tao Yuan ◽  
Shujun Chen ◽  
Dongxiao Li ◽  
...  

Ultra-thin plates have great potential for applications in aircraft skin, the packaging industry, and packaging of electronic products. Herein, 1 mm-thick 5A06 Al alloy was welded with friction stir welding. The microstructural evolution of the welds was investigated in detail with optical microscopy, scanning electron microscopy, and electron backscatter diffraction. The results showed that the friction stir welds of 1 mm-thick 5A06 Al alloy were well formed without obvious defect and with a minimum thickness reduction of 0.025 mm. Further, the grain size and the proportion of low-angle grain boundaries decreased with decreasing welding speed, because of the increasing degree of dynamic recrystallization. Among all of the welded joints, the welding speed of 100 mm/min yielded the smallest grain size and the highest proportion of high-angle grain boundaries, and thus the best mechanical properties. Specifically, the tensile strength of the joint was greater than that of the base material, while the elongation reached 80.83% of the base material.


2019 ◽  
Vol 969 ◽  
pp. 517-523
Author(s):  
Chaitanya Sharma ◽  
Vikas Upadhyay

In this work, Friction Stir Welding (FSW) of alloy 7039 was carried out in T4 temper and resulting microstructure and corrosion behaviour of developed weld were studied. FSW transformed the starting microstructure of base metal and formed stirred zone (SZ) and heat affected zone (HAZ) with varying microstructure and precipitate morphology. The observed zones in welded joints exhibited decreased protection to corrosion resistance than base metal. Dissolution of secondary precipitates in SZ and occurrence of precipitate free zones (PFZs) in HAZ enhanced susceptibility to corrosion of HAZ and weld nugget zone (WNZ) than base metal.


2010 ◽  
Vol 2010.48 (0) ◽  
pp. 65-66
Author(s):  
Tsutomu ITO ◽  
Xiaoyong YUN ◽  
Alexandre GOLOBOLODKO ◽  
Yoshinobu MOTOHASHI ◽  
Goroh ITOH ◽  
...  

Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 337 ◽  
Author(s):  
Khaled Al-Fadhalah ◽  
Fahad Asi

The present work examined the effect of artificial aging on the microstructure, texture, and hardness homogeneity in aluminum alloy AA6082 subjected to friction stir processing (FSP). Aging was applied to FSP samples at three different temperatures (150 °C, 175 °C, and 200 °C) for a period of 1 h, 6 h, and 12 h. Microstructure analysis using optical Microscopy (OM) and Electron Back-Scattered Diffraction (EBSD) indicated that FSP produced fine equiaxed grains, with an average grain size of 6.5 μm, in the stir zone (SZ) due to dynamic recrystallization. Aging was shown to result in additional grain refinement in the SZ due to the occurrence of recovery and recrystallization with either increasing aging temperature and/or aging time. An optimum average grain size of 3–4 μm was obtained in the SZ by applying aging at 175 °C. This was accompanied by an increase in the fraction of high-angle grain boundaries. FSP provided a simple shear texture with a major component of B fiber. Increasing aging temperature and/or time resulted in the formation of recrystallization texture of a Cube orientation. In addition, Vickers microhardness was evaluated for the FSP sample, indicating a softening in the SZ due to the dissolution of the hardening precipitates. Compared to other aging temperatures, aging at 175 °C resulted in maximum hardness recovery (90 Hv) to the initial value of base metal (92.5 Hv). The hardness recovery is most likely attributed to the uniform distribution of fine hardening precipitates in the SZ when increasing the aging time to 12 h.


2005 ◽  
Vol 488-489 ◽  
pp. 371-376 ◽  
Author(s):  
Gang Song ◽  
Li Ming Liu ◽  
Mingsheng Chi ◽  
Ji Feng Wang

This paper presents results of recent investigations on the weldability of several wrought (AZ31, AZ61) and cast magnesium-based alloys (AZ91) by laser-TIG welding process. The investigations showed that magnesium alloys can be easily welded by laser-TIG welding. The grain of the fusion zone was finer than that of in base metal. The width of the heat-affected zone welded by laser-TIG welding process was obviously narrower than that of welded by TIG. Besides, with the Al content of magnesium alloys increasing, the width of the heat-affected zone (HAZ) was increased,as well as the content of β phase(Mg17Al12). The hardness in the fusion zone (FZ) and in HAZ of AZ61 and AZ91 has a large change to the base metal due to the existing of β phase, while no change relative for AZ31. It results from above discussing that laser-TIG welding is an excellent welding process for magnesium alloys.


Sign in / Sign up

Export Citation Format

Share Document