A study on the Surface Properties of Nitrogen Implanted H13 Steel by Plasma Immersion Ion Implantation

2006 ◽  
Vol 118 ◽  
pp. 275-280
Author(s):  
Y.Z. You ◽  
D.I. Kim ◽  
H.G. Chun

The near surface of the H13 steel was implanted by using Plasma immersion ion implantation (PIII) system at constant bias voltage of −20 kV with varying nitrogen (N+ ) ion dose (3, 6, 9, 12, 15×1017 ions/cm2 ). The surface properties of the N+ ion implanted steel were investigated by measuring the microhardness, wear loss and friction coefficient. As increasing N+ ion dose (12×1017 ions/cm2), both wear property and surface hardness were increased. However, these properties were decreased as the incident ion dose increased over 12×1017 ions/cm2. The elemental depth profile and surface roughness were obtained with X-ray photoelectron spectroscopy (XPS) and surface roughness tester, respectively.

2007 ◽  
Vol 14 (03) ◽  
pp. 517-520
Author(s):  
M. F. CHENG ◽  
J. H. YANG ◽  
X. D. LUO ◽  
T. H. ZHANG

Mo and C ions extracted from a metal vapor vacuum arc ion source were implanted into the surface of die steel (H13) to compare the wear resistance mechanisms of the implanted samples, respectively. The concentration depth profiles of implanted ions were measured using Rutherford backscattering spectroscopy and calculated by a code called TRIDYN. The structures of the implanted steel were observed by X-ray photoelectron spectroscopy and grazing-angle X-ray diffraction, respectively. It was found that the conventional heat-treated H13 steel could not be further hardened by the subsequent implanted C ions, and the thickness of the implanted layer was not an important factor for the Mo and C ion implantation to improve the wear resistance of the H13 steel. Mo ion implantation could obviously improve the wear resistance of the steel at an extraction voltage of 48 kV and a dose of 5 × 1017 cm -2 due to formation of a modification layer of little oxidation with Mo 2 C in the implanted surface.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 397 ◽  
Author(s):  
Jinguang Wei ◽  
Qiuqin Lin ◽  
Yahui Zhang ◽  
Wenji Yu ◽  
Chung-Yun Hse ◽  
...  

Coating quality for scrimber products against exterior conditions is largely dependent on the surface properties. The wettability, morphology, and chemical composition of pine scrimber surfaces were investigated to better understand the surface properties. The scrimber was found to be a hydrophilic material because the water contact angles were less than 90°. The panels with a density of 1.20 g/cm3 had the largest angle change rate (k = 0.212). As the panel density increased, the instantaneous contact angle of each test liquid (i.e., water, formamide, and diiodomethane) on the panels decreased, and so did surface free energy. Panels with higher density showed lower surface roughness. Surface roughness across the wood grain was greater than that along the grain. SEM observations showed the high-density panels had a smoother surface with fewer irregular grooves in comparison with the low-density panels. X-ray photoelectron spectroscopy (XPS) analysis indicated that more unoxygenated groups appeared on the surface of high-density panels.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 472
Author(s):  
Peijie Liu ◽  
Yanming Quan ◽  
Junjie Wan ◽  
Lang Yu

To guarantee the smooth operation of trains, rail grinding and wheel turning are necessary practices to remove surface defects. Surface integrity of machined wheel/rail materials is significant to affect their tribological performance. In this paper, firstly, the wheel specimens were turned by a CNC lathe and the rail specimens were ground by a cylindrical grinding machine with various machining parameters. Then, the wear and damage behavior of the machined wheel/rail discs was systematically investigated via a twin-disc wear testing apparatus under dry rolling-sliding condition. The experimental results show that the surface hardness of rail discs after machining is slightly higher than that of wheel discs, while the surface roughness and plastic deformation layer of wheel discs are much larger than those of rail discs. The surface hardness increase degree of rail discs and their thickness of plastic deformation layer are greater than those of wheel discs after the rolling-sliding test. The wear loss of wheel discs is much larger than that of rail discs. Surface roughness, hardness and plastic deformation layer of wheel/rail discs after machining exert a comprehensive effect on the wear behavior, and friction pair with appropriate original surface hardness and roughness generates the smallest amount of wear loss.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 427 ◽  
Author(s):  
Jie Jin ◽  
Wei Wang ◽  
Xinchun Chen

In this study, Ti + N ion implantation was used as a surface modification method for surface hardening and friction-reducing properties of Cronidur30 bearing steel. The structural modification and newly-formed ceramic phases induced by the ion implantation processes were investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and grazing incidence X-ray diffraction (GIXRD). The mechanical properties of the samples were tested by nanoindentation and friction experiments. The surface nanohardness was also improved significantly, changing from ~10.5 GPa (pristine substrate) to ~14.2 GPa (Ti + N implanted sample). The friction coefficient of Ti + N ion implanted samples was greatly reduced before failure, which is less than one third of pristine samples. Furthermore, the TEM analyses confirmed a trilamellar structure at the near-surface region, in which amorphous/ceramic nanocrystalline phases were embedded into the implanted layers. The combined structural modification and hardening ceramic phases played a crucial role in improving surface properties, and the variations in these two factors determined the differences in the mechanical properties of the samples.


2014 ◽  
Vol 21 (06) ◽  
pp. 1450085 ◽  
Author(s):  
XUE WEI TAO ◽  
ZHANG ZHONG WANG ◽  
XIAO BO ZHANG ◽  
ZHI XIN BA ◽  
YA MEI WANG

Gadolinium ( Gd ) ion implantation with doses from 2.5 × 1016 to 1 × 1017 ions/cm2 into ZK60 magnesium alloy was carried out to improve its surface properties. X-ray photoelectron spectroscopy (XPS), nanoindenter, electrochemical workstation and scanning electron microscope (SEM) were applied to analyze the chemical composition, nanomechanical properties and corrosion characteristics of the implanted layer. The results indicate that Gd ion implantation produces a hybrid-structure protective layer composed of MgO , Gd 2 O 3 and metallic Gd in ZK60 magnesium alloy. The surface hardness and modulus of the Gd implanted magnesium alloy are improved by about 300% and 100%, respectively with the dose of 1 × 1017 ions/cm2, while the slowest corrosion rate of the magnesium alloy in 3.5 wt.% NaCl solution is obtained with the dose of 5 × 1016 ions/cm2.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 906
Author(s):  
Chea-Young Lee ◽  
Young-Hee Joo ◽  
Minsoo P. Kim ◽  
Doo-Seung Um ◽  
Chang-Il Kim

Plasma etching processes for multi-atomic oxide thin films have become increasingly important owing to the excellent material properties of such thin films, which can potentially be employed in next-generation displays. To fabricate high-performance and reproducible devices, the etching mechanism and surface properties must be understood. In this study, we investigated the etching characteristics and changes in the surface properties of InGaZnO4 (IGZO) thin films with the addition of O2 gases based on a CF4/Ar high-density-plasma system. A maximum etch rate of 32.7 nm/min for an IGZO thin film was achieved at an O2/CF4/Ar (=20:25:75 sccm) ratio. The etching mechanism was interpreted in detail through plasma analysis via optical emission spectroscopy and surface analysis via X-ray photoelectron microscopy. To determine the performance variation according to the alteration in the surface composition of the IGZO thin films, we investigated the changes in the work function, surface energy, and surface roughness through ultraviolet photoelectron spectroscopy, contact angle measurement, and atomic force microscopy, respectively. After the plasma etching process, the change in work function was up to 280 meV, the thin film surface became slightly hydrophilic, and the surface roughness slightly decreased. This work suggests that plasma etching causes various changes in thin-film surfaces, which affects device performance.


Sign in / Sign up

Export Citation Format

Share Document