Impacts of Ionization Potentials and Megasonic Dispersion

2009 ◽  
Vol 145-146 ◽  
pp. 19-22 ◽  
Author(s):  
Cole Franklin

It has been shown that megasonics can accelerate strip processes such as doped and plasma treated photoresist [1]. However, applied megasonic energy can also damage sensitive semiconductor devices. It was shown that adding a solvent such as IPA or lowering the temperature helps to control cavitation in semi-aqueous fluids [2]. Sonochemical reactions have been observed in various industries, however, there are no published observations in semiconductor cleaning. Ions may form in megasonic driven bubble collapse impacted by the characteristics of a gas or liquid that enters the bubble from the bulk liquid. Lower ionization potential gases or liquids may form ions earlier in the bubble collapse, so as to use up some of the total available energy through sonochemical reactions and possibly reducing the cavitations implosive energy. Here, tests are conducted to vary the liquid and gas type based on ionization potential to look into the impact this would have on cleaning and damage. It is shown that lower ionization or liquid additives lower the device damage.

1966 ◽  
Vol 44 (10) ◽  
pp. 1175-1182 ◽  
Author(s):  
J. A. Stone ◽  
A. R. Quirt ◽  
O. A. Miller

The radiolysis of dilute solutions of ethane-dε, propane-d8, and n-butane-d10 in liquid hydrocarbons at 195 °K results in the production of D2 and HD in amounts which are determined by the relative ionization potentials of solvent and solute. Solvents of higher ionization potential enhance the production of D2 and HD from deuterated solutes of lower ionization potential. When the ionization potentials are in the reverse order the yields are diminished. This solute–solvent interaction, which is ionic in nature, is a general phenomenon in the radiolysis of mixtures of saturated hydrocarbons in the liquid phase and is consistent with charge transfer between solvent and solute.


2021 ◽  
Vol 9 (3) ◽  
pp. 349
Author(s):  
Andrii Sulym ◽  
Pavlo Khozia ◽  
Eduard Tretiak ◽  
Václav Píštěk ◽  
Oleksij Fomin ◽  
...  

This article deals with the method of computer-aided studies of the results of tank container impact tests to confirm the ability of portable tanks and multi-element gas containers to withstand the impact in the longitudinal direction on a specially equipped test rig or using a railway flat car by impacting a flat car with a striking car, in compliance with the requirements of the UN Navigation Rules and Regulations. It is shown that the main assessed characteristic of the UN requirements is the spectrum of the shock response (accelerations) for the interval natural frequencies of the shock pulse. The calculation of the points of the shock response spectrum curve based on the test results is reproduced in four stages. A test configuration of the impact testing of the railway flat car with a tank container is presented, and the impact is performed in such a way that, under a single impact, the shock spectrum curve obtained during the tests for both fittings subjected to impact repeats or exceeds the minimum shock spectrum curve for all frequencies in the range of 2 Hz to 100 Hz. Formulas for determining the relative displacements and accelerations for the interval natural frequencies of the shock wave are given. The research results are presented in graphical form, indicating that the experimental values of the shock response spectrum exceed the minimum permissible values; the equation of the experimental curve of the shock response spectrum in the frequency range 0–100 Hz is described by power-law dependence. The coefficients of the equation were determined by the statistical method of maximum likelihood with the determination factor being 0.897, which is a satisfactory value; a comparative analysis showed that the experimental curve of the impact response spectrum in the frequency range 0–100 Hz exceeds the normalized curve, which confirms compliance with regulatory requirements. A new test configuration is proposed using a tank car with a bulk liquid, the processes in which upon impact differ significantly from other freight wagons under longitudinal impact loads of the tank container. The hydraulic impact resulting from the impact on the tank container and the platform creates an overturning moment that causes the rear fittings to be unloaded.


2011 ◽  
Vol 675-677 ◽  
pp. 747-750
Author(s):  
B. Han ◽  
Dong Ying Ju ◽  
Xiao Guang Yu

Water cavitation peening (WCP) with aeration, namely, a new ventilation nozzle with aeration is adopted to improve the process capability of WCP by increasing the impact pressure induced by the bubble collapse on the surface of components. In this study, in order to investigate the process capability of the WCP with aeration a standard N-type almen strips of spring steel SAE 1070 was treated byWCP with various process conditions, and the arc height value and the residual stress in the superficial layers were measured by means of the Almen-scale and X-ray diffraction method, respectively. The optimal fluxes of aeration and the optimal standoff distances were achieved. The maximum of arc height value reach around 150μm. The depth of plastic layer observed from the results of residual stresses is up to 150μm. The results verify the existence of macro-plastic strain in WCP processing. The distributions of residual stress in near-surface under different peening intensity can provide a reference for engineers to decide the optimal process conditions of WCP processing.


2017 ◽  
Vol 75 (12) ◽  
pp. 2818-2828 ◽  
Author(s):  
Joshua P. Boltz ◽  
Bruce R. Johnson ◽  
Imre Takács ◽  
Glen T. Daigger ◽  
Eberhard Morgenroth ◽  
...  

The accuracy of a biofilm reactor model depends on the extent to which physical system conditions (particularly bulk-liquid hydrodynamics and their influence on biofilm dynamics) deviate from the ideal conditions upon which the model is based. It follows that an improved capacity to model a biofilm reactor does not necessarily rely on an improved biofilm model, but does rely on an improved mathematical description of the biofilm reactor and its components. Existing biofilm reactor models typically include a one-dimensional biofilm model, a process (biokinetic and stoichiometric) model, and a continuous flow stirred tank reactor (CFSTR) mass balance that [when organizing CFSTRs in series] creates a pseudo two-dimensional (2-D) model of bulk-liquid hydrodynamics approaching plug flow. In such a biofilm reactor model, the user-defined biofilm area is specified for each CFSTR; thereby, Xcarrier does not exit the boundaries of the CFSTR to which they are assigned or exchange boundaries with other CFSTRs in the series. The error introduced by this pseudo 2-D biofilm reactor modeling approach may adversely affect model results and limit model-user capacity to accurately calibrate a model. This paper presents a new sub-model that describes the migration of Xcarrier and associated biofilms, and evaluates the impact that Xcarrier migration and axial dispersion has on simulated system performance. Relevance of the new biofilm reactor model to engineering situations is discussed by applying it to known biofilm reactor types and operational conditions.


2008 ◽  
Vol 373-374 ◽  
pp. 754-757 ◽  
Author(s):  
Dong Ying Ju ◽  
B. Han

Water cavitation peening (WCP) with aeration is a novel surface enhancement method. A new ventilation nozzle with aeration is adopted to improve the process capability of WCP by increasing the impact pressure induced by the bubble collapse on the surface of components. In this study, in order to investigate the process capability of the WCP with aeration, a standard N-type almen strips of spring steel SAE 1070 was treated by WCP with various process conditions, and the arc height value and the residual stress in the superficial layers were measured by X-ray diffraction method. The optimal fluxes of aeration and the optimal standoff distances were achieved.


2004 ◽  
Vol 13 (4) ◽  
pp. 505-509 ◽  
Author(s):  
Chen Xiao ◽  
Xu Rong-Qing ◽  
Shen Zhong-Hua ◽  
Lu Jian ◽  
Ni Xiao-Wu

The absorption spectra of hexatriene and divinyl acetylene have been investigated in the region 2700-1200 A. In both molecules the longest wave-length regions of absorption are the strongest and these are interpreted as N → V 1 intravalence shell transitions. The spectra appear to be consistent with a value of about 8·2 V for the first ionization potential of hexatriene. Calculations based oh certain features of the spectra give reasonable values for the double-bond resonance integral. Graphs are given which enable the first regions of absorption and the ionization potentials of the higher polyenes to be predicted.


Author(s):  
Hiroyuki Takahira ◽  
Yoshinori Jinbo

The ghost fluid method (GFM) is improved to investigate violent bubble collapse in a compressible liquid, in which the adaptive mesh refinement with multigrids, the surface tension, and the thermal diffusion through the bubble interface are taken into account. The improved multigrid GFM is applied to the interaction of an incident shock wave with a bubble. The multigrid GFM captures the fine interfacial and vortex structures of the toroidal bubble when the bubble collapses violently accompanied with the penetration of the liquid jet and the formation of the shock waves. The multigrid GFM is also applied to the bubble collapse near a tissue surface in which the tissue is modeled with gelatin in order to predict the tissue damage due to the bubble collapse; the motions of three phases for the gas inside the bubble, the liquid surrounding the bubble, and the gelatin boundary are solved directly by coupling the level set method with the improved GFM. Two kinds of level set functions are utilized for distinguishing the gas-liquid interface from the liquid-gelatin interface. It is shown that the impact of the shock waves generated from the collapsing bubble on the boundary leads to the formation of depression of the boundary; the toroidal bubble penetrates into the depression. Also, the surface tension effects are successfully included in the improved GFM. The thermal effects of internal gas on the bubble collapse are also discussed by considering the thermal diffusion across the interface in the GFM. The thermal boundary layers of the toroidal bubble are captured with the method. The result shows that the smaller the initial bubble radius becomes, the lower the maximum temperature inside the bubble becomes because of the thermal diffusion across the interface.


1971 ◽  
Vol 49 (7) ◽  
pp. 1135-1136 ◽  
Author(s):  
A. B. Cornford ◽  
D. C. Frost ◽  
F. G. Herring ◽  
C. A. McDowell

The ionization potentials of the methyl amines down to 20 eV binding energy, have been determined by photoelectron spectroscopy, and are compared with those predicted by i.n.d.o.-l.c.a.o.-s.c.f. theory. The first ionization potential for each compound refers to the removal of an electron from the lone pair, and is shown to be the one most affected by the inclusion of one center repulsion integrals in the i.n.d.o. calculations.


2018 ◽  
Vol 13 (6) ◽  
pp. 701-708 ◽  
Author(s):  
Marco J. Konings ◽  
Florentina J. Hettinga

Purpose: In real-life competitive situations, athletes are required to continuously make decisions about how and when to invest their available energy resources. This study attempted to identify how different competitive environments invite elite short-track speed skaters to modify their pacing behavior during head-to-head competition. Methods: Lap times of elite 500-, 1000- and 1500-m short-track speed skating competitions between 2011 and 2016 (N = 34,095 races) were collected. Log-transformed lap and finishing times were analyzed with mixed linear models. The fixed effects in the model were sex, season, stage of competition, start position, competition importance, event number per tournament, number of competitors per race, altitude, and time qualification. The random effects of the model were athlete identity and the residual (within-athlete race-to-race variation). Separate analyses were performed for each event. Results: Several competitive environments, such as the number of competitors in a race (a higher number of competitors evoked most likely a faster initial pace; coefficient of variation [CV] = 1.9–9.3%), the stage of competition (likely to most likely, a slower initial pace was demonstrated in finals; CV = −1.4% to 2.0%), the possibility of time qualification (most likely a faster initial pace; CV = 2.6–5.0%), and competition importance (most likely faster races at the Olympics; CV = 1.3–3.5%), altered the pacing decisions of elite skaters in 1000- and 1500-m events. Stage of competition and start position affected 500-m pacing behavior. Conclusions: As demonstrated in this study, different competitive environments evoked modifications in pacing behavior, in particular in the initial phase of the race, emphasizing the importance of athlete–environment interactions, especially during head-to-head competitions.


Sign in / Sign up

Export Citation Format

Share Document