Glass-Coated Cu-Mn-Ga Microwires Produced by Taylor-Ulitovsky Technique

2009 ◽  
Vol 152-153 ◽  
pp. 79-84 ◽  
Author(s):  
Joan Josep Suñol ◽  
L. Escoda ◽  
C. García ◽  
V.M. Prida ◽  
Victor Vega ◽  
...  

Glass-coated Cu-Mn-Ga microwires were fabricated by Taylor-Ulitovsky technique. By means of energy dispersive spectroscopy microanalysis, an average alloy composition of Cu56Ga28Mn16 was determined. The temperature dependence of magnetization measured at a low magnetic field showed the coexistence of two ferromagnetic phases. The Curie temperature of one phase is 125 K and above room temperature for the other one. X-ray diffraction at room temperature and at 100 K reflects the presence of the same three crystalline phases corresponding to the cubic B2 Cu-Mn-Ga structure as a main phase and the minor phases of fcc Cu rich solid solution with Mn and Ga and the monoclinic CuO.

2012 ◽  
Vol 194 ◽  
pp. 187-193 ◽  
Author(s):  
J.M. Loureiro ◽  
Benilde F.O. Costa ◽  
Gerard Le Caër ◽  
Bernard Malaman

Ternary alloys, (Fe50−x/2Co50−x/2)Snx(x ≤ 33 at.%), are prepared by mechanical alloying from powder mixtures of the three elements. As-milled alloys are studied by X-ray diffraction and 57Fe and 119Sn Mössbauer spectroscopy. The solubility of Sn in near-equiatomic bcc FeCo is increased from ~0.5 at. % at equilibrium to ~20 at.% in the used milling conditions. The average 119Sn hyperfine magnetic field at room temperature is larger, for any x, than the corresponding fields in mechanically alloyed Fe-Sn solid solutions.


2005 ◽  
Vol 20 (5) ◽  
pp. 1122-1130 ◽  
Author(s):  
Y.X. Yin ◽  
H.M. Wang

Wear-resistant Cu-based solid-solution-toughened Cr5Si3/CrSi metal silicide alloy with a microstructure consisting of predominantly the dual-phase primary dendrites with a Cr5Si3 core encapsulated by CrSi phase and a small amount of interdendritic Cu-based solid solution (Cuss) was designed and fabricated by the laser melting process using Cr–Si–Cu elemental powder blends as the precursor materials. The microstructure of the Cuss-toughened Cr5Si3/CrSi metal silicide alloy was characterized by optical microscopy, powder x-ray diffraction, and energy dispersive spectroscopy. The Cuss-toughened silicide alloys have excellent wear resistance and low coefficient of friction under room temperature dry sliding wear test conditions with hardened 0.45% C carbon steel as the sliding–mating counterpart.


SPIN ◽  
2017 ◽  
Vol 07 (02) ◽  
pp. 1750002 ◽  
Author(s):  
M. Hemmous ◽  
A. Guittoum

We have studied the effect of the silicon concentration on the structural and hyperfine properties of nanostructured Fe[Formula: see text]Six powders ([Formula: see text], 20, 25 and 30[Formula: see text]at.%) prepared by mechanical alloying. The X-ray diffraction (XRD) studies indicated that after 72[Formula: see text]h of milling, the solid solution bcc-[Formula: see text]-Fe(Si) is formed. The grain sizes, [Formula: see text]D[Formula: see text] (nm), decreases with increasing Si concentration and reaches a minimum value of 11[Formula: see text]nm. We have found that the lattice parameter decreases with increasing Si concentration. The changes in values are attributed to the substitutional dissolution of Si in Fe matrix. From the adjustment of Mössbauer spectra, we have shown that the mean hyperfine magnetic field, [Formula: see text]H[Formula: see text] (T), decreases with increasing Si concentration. The substitutional dependence of [Formula: see text]H[Formula: see text] (T) can be attributed to the effect of p electrons Si influencing electrons d of Fe.


2012 ◽  
Vol 29 (1) ◽  
pp. 50
Author(s):  
D.N Ba ◽  
L.T Tai ◽  
N.T Trung ◽  
N.T Huy

The influences of the substitution of Ni with Mg on crystallographic and magnetic properties of the intermetallic alloys LaNi5-xMgx (x ≤ 0.4) were investigated. The X-ray diffraction patterns showed that all samples were of single phase, and the lattice parameters, a and c, decreased slightly upon chemical doping. LaNi5 is well known as an exchange-enhanced Pauli paramagnet. Interestingly, in LaNi5-xMgx, the ferromagnetic order existed even with a small amount of dopants; the Curie temperature reached the value of room temperature for x = 0.2, and enhanced with increasing x.


1991 ◽  
Vol 05 (21) ◽  
pp. 1447-1456 ◽  
Author(s):  
A. R. HARUTUNYAN ◽  
L. S. GRIGORYAN ◽  
A. S. KUZANYAN ◽  
A. A. KUZNETSOV ◽  
A. A. TERENTIEV ◽  
...  

Two samples of benzene-treated Bi–Pb–Sr–Ca–Cu–O powder exhibited at 300 K magnetic field dependent diamagnetism and magnetization irreversibility. The treatment with benzene resulted also in the appearance of microwave absorption at low magnetic fields, while is sensitive to magnetic history of the sample. From X-ray diffraction data one can see that upon benzene treatment the reflections of 85 K and 110 K phases do not change practically, but a series of new reflections appeared, indicating a lattice modulation with 4.9 nm periodicity. A microprobe analysis revealed substantial inhomogeneity of chemical composition across the samples. The room temperature anomalies were weakened in one sample and vanished in the second upon thermal cycling.


2010 ◽  
Vol 663-665 ◽  
pp. 1256-1259
Author(s):  
Gui Mei Shi ◽  
Ge Song ◽  
Shu Lian ◽  
Jin Bing Zhang

A new type of antiferromagnetic CoAl2O4 coated ferromagnetic Co solid solution is synthesized by arc-discharging. Typical HRTEM images show that the nanocapsules form in a core-shell structure. The size of the nanocapsules is in range of 10-90 nm and the thickness of the shell is about 3-10 nm. X-ray photoelectron spectrum (XPS) and X-ray diffraction (XRD) reveal that the core consists of Co solid solution, while the shell is CoAl2O4. The magnetic field and temperature dependence of magnetizations confirm that the Co solid solution nanocapsules are basically in the ferromagnetic state below Curie temperature. In addition, the antiferromagnetic order occurs with Neél temperature TN of about 5 K. The saturation magnetization of Ms = 76.1 Am2/kg and the coercive force of Hc= 23.28 kA/m are achieved at room temperature for the Co solid solution nanocapsules.


1980 ◽  
Vol 24 ◽  
pp. 221-230 ◽  
Author(s):  
R. B. Roof

Two metal foils, one pure plutonium and the other being a solid solution of 6.5 a/o gallium In plutonium, were examined, in-situ, by X-ray diffraction techniques while under pressure. The purpose was to determine the compression and compressibility of these materials as a function of pressure and to identify the products of any transformation that may occur due to the action of applied pressures.


2007 ◽  
Vol 546-549 ◽  
pp. 301-304
Author(s):  
Wei Qiu ◽  
En Hou Han ◽  
Lu Liu

Addition of RE elements to Al-containing Mg alloys can improve properties of Mg alloys at elevated temperatures. In the present investigation, hot-extruded AZ31+x%Nd. (x=0.1,0.3,0.6and1.0 wt%) wrought Mg alloy were prepared .The effects of Nd on microstructures and mechanical properties at room temperature of new alloy were investigated. The investigation found that Nd can bring about two kind of precipitation phases . One is AlNd phase, the other is AlNdMn phase, which were identified as Al11Nd3 and Al8NdMn4 by X-ray diffraction and TEM.


1994 ◽  
Vol 360 ◽  
Author(s):  
L.G. Carreiro ◽  
J.V. Marzik ◽  
K.K Deb

AbstractCalorimetric changes in a series of pure and doped single crystal and polycrystalline BaTiO3 were studied using differential scanning calorimetry over the temperature range of-110°C to 200°BC. The dopants, oxides of niobium and iron were varied from 0.5 to 8 mole percent, and strontium was varied from 5 to 35 mole percent. Endotherms were observed corresponding to three crystallographic transitions. The highest observed thermal transition corresponds to a tetragonal to cubic crystallographic transition and is also associated with the Curie temperature in these materals. Two additional endothermic transitions were also observed, an intermediatetemperature orthorhombic to tetragonal transition, and a low-temperature rhombohedral to orthorhombic transition. The three dopants decreased the crystallographic transition temperatures and Curie temperature as the dopant concentration was increased. X-ray diffraction was used to identify phases present and to determine the extent of solid solution. It is expected that these materials will display improved infrared detection as well as opto-electronic properties.


2021 ◽  
Vol 40 (1) ◽  
pp. 57-59
Author(s):  
Carlos Ariel Samudio Perez ◽  
Cezar Augusto Garbin

Alternative Ni-Cr alloys applied in dentistry of two commercial brands for ceramometal restoration were evaluated. The alloys were analyzed in the commercial and after casting conditions using experimental techniques of metallography, X-ray diffraction, superficial hardness and density. The metalografics and X-ray diffraction analysis showed that, the alloys microstructure is marked with the presence of a solid solution having an ordered face- centred cubic structure, Ni-rich austenitic (y phase) matrix, and with fine precipitates particles of secondary phases. The Vicker hardness tests showed a decrease in hardness values of the studied alloys aer casting. The alloys density values, on the other hand, did not manifest changes.


Sign in / Sign up

Export Citation Format

Share Document