Effect of Texture on Tensile Properties of an ECAP-Processed MA2-1 Magnesium Alloy

2010 ◽  
Vol 160 ◽  
pp. 159-164 ◽  
Author(s):  
Vladimir Serebryany ◽  
T.M. Ivanova ◽  
T.I. Savyolova ◽  
Sergey V. Dobatkin

Various equal channel angular pressing (ECAP) regimes by routes A and Bc were applied to a commercial MA2-1 (Mg-5wt.%Al-1wt.%Zn-0.4wt.%Mn) alloy for the development of texture which is different from the one of conventionally extruded and annealed alloy. In order to avoid the grain-size effect, the ECAP-processed alloy was annealed to coarsen the grains. The alloy texture before and after the ECAP was determined by the approximation of the X-ray measured pole figures with the canonical normal distributions of central type. The ECAP implementation results in the formation of ultra-fine grained structure of the alloy with an average grain size of 2.0-2.4 µm. The ECAP also drastically changes the initial axial texture characterized by a sharp basal component by splitting it into several more scattered orientations. The degree of the orientation scattering depends on the ECAP regime and route. The annealing of alloy after ECAP results in the grain size growth to the initial state of the extruded and annealed alloy. In addition to that the texture changes of the ECAP-processed alloy after annealing, unlike the structure changes, don’t result in texture of the initial state. The mechanical tensile properties of the annealed alloy substantially depend on the preceding ECAP routes. The yield strength of the annealed alloy decreases after all routes of ECAP. On the contrary, the uniform elongation compared with the one of the initial state of the alloy decreases after 4A route and increases after 4Bc route of ECAP. The effect of the texture and structure on the yield strength and tensile elongation of the alloy after ECAP and annealing was estimated using calculation of the generalized Schmid factors for specific preferred orientations of the active deformation systems and Hall-Petch relationship.

Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1148 ◽  
Author(s):  
Roman Husák ◽  
Hynek Hadraba ◽  
Zdeněk Chlup ◽  
Milan Heczko ◽  
Tomáš Kruml ◽  
...  

Oxide dispersion-strengthened (ODS) materials contain homogeneous dispersions of temperature-stable nano-oxides serving as obstacles for dislocations and further pinning of grain boundaries. The strategy for dispersion strengthening based on complex oxides (Y-Hf, -Zr, -Ce, -La) was developed in order to refine oxide dispersion to enhance the dispersion strengthening effect. In this work, the strengthening of EUROFER steel by complex oxides based on Y and elements of the IIIB group (lanthanum, scandium) and IVB group (cerium, hafnium, zirconium) was explored. Interparticle spacing as a dispersoid characteristic appeared to be an important factor in controlling the dispersion strengthening contribution to the yield strength of ODS EUROFER steels. The dispersoid size and average grain size of ODS EUROFER steel were altered in the ranges of 5–13 nm and 0.6–1.7 µm, respectively. Using this strategy, the yield strength of the prepared alloys varied between 550 MPa and 950 MPa depending on the doping element.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 645
Author(s):  
Igor Litovchenko ◽  
Sergey Akkuzin ◽  
Nadezhda Polekhina ◽  
Kseniya Almaeva ◽  
Evgeny Moskvichev

The effect of high-temperature thermomechanical treatment on the structural transformations and mechanical properties of metastable austenitic steel of the AISI 321 type is investigated. The features of the grain and defect microstructure of steel were studied by scanning electron microscopy with electron back-scatter diffraction (SEM EBSD) and transmission electron microscopy (TEM). It is shown that in the initial state after solution treatment the average grain size is 18 μm. A high (≈50%) fraction of twin boundaries (annealing twins) was found. In the course of hot (with heating up to 1100 °C) plastic deformation by rolling to moderate strain (e = 1.6, where e is true strain) the grain structure undergoes fragmentation, which gives rise to grain refining (the average grain size is 8 μm). Partial recovery and recrystallization also occur. The fraction of low-angle misorientation boundaries increases up to ≈46%, and that of twin boundaries decreases to ≈25%, compared to the initial state. The yield strength after this treatment reaches up to 477 MPa with elongation-to-failure of 26%. The combination of plastic deformation with heating up to 1100 °C (e = 0.8) and subsequent deformation with heating up to 600 °C (e = 0.7) reduces the average grain size to 1.4 μm and forms submicrocrystalline fragments. The fraction of low-angle misorientation boundaries is ≈60%, and that of twin boundaries is ≈3%. The structural states formed after this treatment provide an increase in the strength properties of steel (yield strength reaches up to 677 MPa) with ductility values of 12%. The mechanisms of plastic deformation and strengthening of metastable austenitic steel under the above high-temperature thermomechanical treatments are discussed.


2012 ◽  
Vol 468-471 ◽  
pp. 2124-2127 ◽  
Author(s):  
Shao Feng Zeng ◽  
Kai Huai Yang ◽  
Wen Zhe Chen

Equal channel angular pressing (ECAP) was applied to a commercial AZ61 magnesium alloy for up to 8 passes at temperatures as low as 473K. Microstructures and mechanical properties of as-received and ECAP deformed samples were investigated. The microstructure was initially not uniform with a “bimodal” grain size distribution but became increasingly homogeneous with further ECAP passes and the average grain size was considerably reduced from over 26 μm to below 5 μm. The ultimate tensile strength (UTS) decreases clearly after one pass, but increases significantly up to two passes, and then continuously slowly decreases up to six passes, and again increases slightly up to eight passes. In contrast, the uniform elongation increased significantly up to 3 passes, followed by considerable decrease up to 8 passes. These observations may be attributed to combined effects of grain refinement and texture development.


2020 ◽  
Vol 2 (11) ◽  
Author(s):  
Juhani Laitila ◽  
Lassi Keränen ◽  
Jari Larkiola

AbstractIn this study, we present the effect of enhanced cooling on the mechanical properties of a high-strength low-alloy steel (having a yield strength of 700 MPa) following a single-pass weld process. The properties evaluated in this study include uniform elongation, impact toughness, yield, tensile and fatigue strengths alongside the cooling time of the weld. With the steel used in this study, the enhanced cooling resulted in a weld joint characterized with excellent cross-weld uniform elongation, yield and fatigue strength. The intensified cooling reduced the time it takes for the weld to reach 100 °C by around 190 s. Not only the fusion line of the weld was less pronounced, but also the grain size of the CGHAZ was greatly refined as a result of the enhanced cooling. The results indicate that combining external cooling to the welding processes can be beneficial for the studied high-strength steel.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Fuan Wei ◽  
Jinhui Wang ◽  
Ping Li ◽  
Bo Shi

The mechanical properties of Mg-6Sn-3Al-1Zn alloy were enhanced with bimodal grain size disturbed in the microstructure uniformly; the Mg-6Sn-3Al-1Zn alloys were rolled with 60% thickness reduction at different rolling temperatures. The results have shown that the Mg-6Sn-3Al-1Zn alloys are composed of Mg2Sn phase and α-Mg matrix phase. When the rolling temperature was less than or equal to 400°C, with the rolling temperature increasing, the average size and volume fraction of Mg2Sn phase and the average grain size of small grains remained unchanged, the average grain size of large grains decreased, the volume fraction of small grains increased, and the yield strength of the alloy increased. When the rolling temperature reached 450°C, the average size and volume fraction of Mg2Sn phase and the average grain size of large grains increased, and the volume fraction of small grains and the yield strength of the alloy decreased. The elongation increased with the rolling temperature increasing, but the change trend of hardness was just opposite. When the alloy was rolled at 400°C, the average sizes of small grains, large grains, and Mg2Sn phases were 3.66 μm, 9.24 μm, and 19.5 μm, respectively. The volume fractions of small grains, large grains, and Mg2Sn phases were 18.6%, 77.6%, and 3.8%, respectively. And the tensile properties reached the optimum; for example, the tensile strength, yield strength, elongation, and Vickers hardness were 361 MPa, 289.5 MPa, 20.5%, and 76.3 HV, respectively.


2016 ◽  
Vol 61 (2) ◽  
pp. 475-480
Author(s):  
K. Bolanowski

Abstract The paper analyzes the influence of different heat treatment processes on the mechanical properties of low-alloy high-strength steel denoted by Polish Standard (PN) as 10MnVNb6. One of the findings is that, after aging, the mechanical properties of rolled steel are high: the yield strength may reach > 600 MPa, and the ultimate tensile strength is > 700 MPa. These properties are largely dependent on the grain size and dispersion of the strengthening phase in the ferrite matrix. Aging applied after hot rolling contributes to a considerable rise in the yield strength and ultimate tensile strength. The process of normalization causes a decrease in the average grain size and coalescence (reduction of dispersion) of the strengthening phase. When 10MnVNb6 steel was aged after normalization, there was not a complete recovery in its strength properties.


2018 ◽  
Vol 37 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Hansong Xue ◽  
Xinyu Li ◽  
Weina Zhang ◽  
Zhihui Xing ◽  
Jinsong Rao ◽  
...  

AbstractThe effects of Bi on the microstructure and mechanical properties of AZ80-2Sn alloy were investigated. The results show that the addition of Bi within the as-cast AZ80-2Sn alloy promotes the formation of Mg3Bi2 phase, which can refine the grains and make the eutectic phases discontinuous. The addition of 0.5 % Bi within the as-extruded AZ80-2Sn alloy, the average grain size decreases to 12 μm and the fine granular Mg17Al12 and Mg3Bi2 phases are dispersed in the α-Mg matrix. With an increase in Bi content, the Mg17Al12 and Mg3Bi2 phases become coarsened and the grain size increases. The as-extruded AZ80-2Sn-0.5 %Bi alloy has the optimal properties, and the ultimate tensile strength, yield strength and elongation are 379.6 MPa, 247.1 MPa and 14.8 %, respectively.


2011 ◽  
Vol 682 ◽  
pp. 49-54
Author(s):  
Bin Chen ◽  
Chen Lu ◽  
Dong Liang Lin ◽  
Xiao Qin Zeng

The Mg96Y3Zn1 alloy processed by equal channel angular pressing has been investigated. It was found that the Mg96Y3Zn1 alloy processed by ECAP obtained ultrafine grains and exhibits excellent mechanical properties. After ECAP, the average grain size of Mg96Y3Zn1 alloy refined to about 400 nm. The highest strengths with yield strength of 381.45MPa and ultimate tensile strength of 438.33MPa were obtained after 2 passes at 623K. It was found that cracks were preferentially initiated and propagated in the interior of X-phase during the tensile test. As a result, the elongation of alloy is decreased with pass number increasing.


Author(s):  
D. K. Mak ◽  
W. R. Tyson

Eight pipes, manufactured between 1952 and 1981, have been collected from various Canadian pipeline companies and tested. They include six pipes from the field made in the 1950’s and 1960’s of X52 grade, one experimental pipe manufactured in the early 1970’s of X65 grade, and a modern clean steel of X70 grade manufactured in 1981. The steels have been characterized by chemical composition, grain size, yield and tensile strengths, notch toughness (Charpy V-notch absorbed energy), and fracture toughness (J-integral and crack-tip opening displacement). The modern steel has much lower carbon content and much smaller grain size compared to the pipes manufactured in the 1950’s and 1960’s. The former is a fully-killed controlled-rolled steel while the latter are semi-killed ferrite-pearlite steels. All eight pipes have ferrite-pearlite microstructures, with the average grain size ranging from 4 to 14 μm. The transverse yield strength was found to be significantly higher (by about 20%) than the longitudinal yield strength. Notch toughness and fracture toughness were similar for pipes manufactured in the 1950’s and 1960’s. In comparison, the modern steel has much higher toughness and higher strength. J-integral and CTOD δ were found to be related by J = m σyδ with m = 1.8 and σy the transverse yield strength. The J-integral at 0.2 mm crack growth was consistent with a linear correlation with the upper-shelf Charpy energy. All the steels in this study fractured by ductile tearing in slow loading in spite of the low toughness of the older steels. It is suggested that, in the absence of Charpy upper shelf data, a reasonable representative toughness for resistance to axial surface flaws propagating by ductile tearing is J = 120±15 kJ/m2.


2010 ◽  
Vol 638-642 ◽  
pp. 1934-1939 ◽  
Author(s):  
Y.B. Chun ◽  
S.H. Ahn ◽  
D.H. Shin ◽  
S.K. Hwang

Recent advances in the severe plastic deformation technique have shown that effective refinement of the microstructure can be achieved in pure metals as well as in alloys. Among the various methods of severe plastic deformation, equal channel angular pressing has been the subject of numerous research works. Since the grain refining effect of this technique appears to reach a peak at a level of approximately 200 nm further microstructural changes are sought—deformation at a cryogenic temperature being one of the candidate routes. In the present study, we opted to combine equal channel angular pressing and low temperature plastic deformation to refine the microstructure of commercially pure V. The starting microstructure consisted of equiaxed grains with an average size of 100 micrometers. This microstructure was refined to a 200 nm thick lamellar microstructure by 8 passes of equal channel angular pressing at 350°C. The lamellar thickness was further reduced to 140 nm upon subsequent cryogenic rolling, which resulted in room temperature yield strength of 768 MPa. In the specimens, recrystallization annealed at 850°C, the grain size reached 1000 nm or larger, and the yield strength obeyed the Hall-Petch relationship with that grain size. The tensile elongation value, which was low and insensitive to the grain size in the as-deformed state, increased significantly up to 43% with the recrystallization annealing.


Sign in / Sign up

Export Citation Format

Share Document