Simulation of 2S1 Tracked Vehicle Model with Modernized Suspension System during Crossing a Single Obstacle

2013 ◽  
Vol 208 ◽  
pp. 140-147
Author(s):  
Tomasz Nabagło ◽  
Andrzej Jurkiewicz ◽  
Marcin Apostoł ◽  
Piotr Micek

In the article, three alternative models of 2S1 platform suspension system are presented. First model is based on existing construction of 2S1 platform suspension. Two next were modernized by usage of new solutions in tracked vehicles suspension technology. The solutions are especially associated with torsion spring element and idler mechanism. The authors have assumed simulation conditions for straight line driving of the vehicle models, while they overcome a single obstacle with one track. Results of all models simulations are compared and analyzed to improve stability of the vehicle while driving. There are also used a human response filter to determine less harmful driving conditions for vehicle crew.

Author(s):  
Jaroslav Matej

It is known that tension in the track of a tracked vehicle has a large effect on its driving properties. Simple track tensioning solutions, like track adjusting link assembly, use a one-road wheel motion to govern the motion of a track tensioning element. Thus the track tensioning force is a function of a terrain micro-profile. A logical improvement of this approach is to use all of the road wheels to govern the motion of the track tensioning element. This can be achieved by an auxiliary track tensioning system. This paper analyzes the conceptual track tensioning system governed by a terrain micro-profile. The motion of the track tensioning element is designed as a function of all of the road wheels' motions. A genetic algorithm method, implemented in Java language, is used to find the optimal parameters of the tensioning system and the results are verified via multibody dynamics simulation using the MSC.ADAMS/View system. The paper answers the question of whether the use of all of the road wheels' motions to govern the motion of the track tensioning element can be useful or not. The results indicate that the use of the auxiliary system can decrease the variance of the track tensioning force, in comparison with the track tensioning system without auxiliary tensioning. This means that the value of the track tensioning force is closer to its desired, predefined, and constant value during the whole simulation. The tracked vehicle model that is used is a simplified one and it is intended as a base for specific designs of track tensioning systems with auxiliary tensioning. The results suggest that the system can be used to improve the driving properties of tracked vehicles or robots.


1985 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
MV Braunack

Changes in soil strength and surface micro-relief were measured in a calcareous earth (Gc. 1.12) at a site north of Woomera, before and after the passage of a tracked vehicle. The passage of a tracked vehicle resulted in a reduction of ?oil strength and the formation of ruts. The degree of change depended on the number of vehicle passes and whether the vehicle was travelling in a straight line or turning. Implications for erosion are discussed.


Machines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 38
Author(s):  
Antonio Tota ◽  
Enrico Galvagno ◽  
Mauro Velardocchia

Articulated tracked vehicles have been traditionally studied and appreciated for the extreme maneuverability and mobility flexibility in terms of grade and side slope capabilities. The articulation joint represents an attractive and advantageous solution, if compared to the traditional skid steering operation, by avoiding any trust adjustment between the outside and inside tracks. This paper focuses on the analysis and control of an articulated tracked vehicle characterized by two units connected through a mechanical multiaxial joint that is hydraulically actuated to allow the articulated steering operation. A realistic eight degrees of freedom mathematical model is introduced to include the main nonlinearities involved in the articulated steering behavior. A linearized vehicle model is further proposed to analytically characterize the cornering steady-state and transient behaviors for small lateral accelerations. Finally, a hitch angle controller is designed by proposing a torque-based and a speed-based Proportional Integral Derivative (PID) logics. The controller is also verified by simulating maneuvers typically adopted for handling analysis.


Author(s):  
S B Choi ◽  
D W Park ◽  
D Y Lee

In this paper, a controllable electrorheological fluid suspension system (ERSS) is proposed for a tracked vehicle. After identifying the Bingham properties of an electrorheological fluid, a double-rod-type ERSS is devised, and its damping characteristics are evaluated with respect to the intensity of the electric field. Subsequently, the governing equation of motion of a tracked vehicle featuring the ERSS is established followed by the formulation of a linearized state space model. An optimal controller integrated with Kalman filter is then designed in order to suppress unwanted vibrations of the tracked vehicle subjected to bump and random road excitations. Control performances such as vertical acceleration at the centre of gravity are evaluated in both time and frequency domains.


2013 ◽  
Vol 694-697 ◽  
pp. 497-502
Author(s):  
Jiang Tao Gai ◽  
Shou Dao Huang ◽  
Guang Ming Zhou ◽  
Yi Yuan

In order to search after a new way of the propulsion system of tracked vehicle, a novel structure form of electro-mechanical transmission was developed in this paper, through analyzing the advantages and disadvantages of existing projects of electric drive system for tracked vehicle. It could increase the rate of power exertion obviously and synthesize the mechanical and electrical strongpoint. And based on the structure form, an electro-mechanical transmission was designed with double electromotor added planetary mechanism of steering power coupling and gearshift, considering engineering realization. And then straight-line driving and steering performances of the transmission were calculated which proved that the novel electro-mechanical transmission could meet the requirement of tracked vehicle propulsion well.


Author(s):  
Chao Wang ◽  
Weijie Zhang ◽  
Guosheng Wang ◽  
Yong Guo

High power density energy regeneration is one of the effective solutions to solve the contradiction between improving the damping performance and energy consumption of active suspension. The hydraulic commutator is used to realize hydraulic rectification and hydraulic variable speed/pump/motor with few teeth difference gear pairs is used to match the speed, combined with permanent magnet motor power generation and power supply to put forward kilowatt level high power density mechanical-electrical-hydraulic regenerative suspension system for high-speed tracked vehicles. The mathematical model and fluid-solid-thermo-magnetic multiphysics coupling model are built to analyze the damping performance and regenerative characteristics of the system under passive and semi-active working conditions. The simulation results show that the damping force of the system increases with the increase of the road excitation amplitude and the semi-active control can be realized by adjusting the duty cycle with the PWM control rectifier module. The high power density mechanical-electrical-hydraulic regenerative suspension system can realize kilowatt level energy regeneration, and the regenerative efficiency is more than 50% under low-frequency excitation. The temperature rise of the system is low during operation, which is helpful to improve the reliability and service life.


2014 ◽  
Vol 701-702 ◽  
pp. 659-665
Author(s):  
Fa Liang Zhou ◽  
Xiao Jun Xu ◽  
Hao Yue Zhang

The steering mechanism of tracked vehicles is complicated and large, which is an obstacle for its miniaturization. According to the theory of rubber-belt CVTs, a new kind of steering mechanism for small Tracked vehicle is designed. The mechanism consists of two symmetrical-layout rubber-belt CVTs. A sliding part for steering is designed, which can slide axially to make the transmission ratio of one transmission increase while the other reduces, so that the tracked vehicle turns. The steering motion is calculated and its motion discipline is founded. The steering sensitivity and steering smoothness are analyzed, and its steering performance is evaluated.


Author(s):  
Shiping Yao ◽  
Colin Morgan ◽  
Nigel J. Leighton

Abstract The basic characteristic of a conventional spring is that of a constant rate, that is a linear force-displacement relationship. If, however, a flat, thin leaf spring is end-loaded past its buckling point it will deform into a curve and the resulting force-displacement relationship can be made virtually flat; that is a very low effective rate is seen, once the buckling force is exceeded. A novel form of automotive active suspension system proposed by Leighton & Pullen (1994) relies upon the “buckled spring” element acting through a variable geometry wishbone assembly to provide wheel to body forces that are controllable by a low power actuator but are virtually independent of wheel to body displacement. The dynamic behavior of the spring element is also significant, since resonance effects may affect the vibration isolating properties of the suspension system and may result in unstable modes of motion. This paper presents a rigorous derivation of the static and dynamic characteristic of the spring element and of the effect of design compromises that are essential for practical application. Comparison of the experimental and simulation results shows that the simulation can be used to predict the static and dynamic performance of the spring.


2018 ◽  
Vol 224 ◽  
pp. 02039 ◽  
Author(s):  
Kirill B. Evseev ◽  
Aleksander B. Kartashov ◽  
Idris Z. Dashtiev ◽  
Aleksey V. Pozdeev

For today’s composite materials have many advantages over steel materials. The composite materials take the main part in modern automobile constructions. Suspension system is the main automobile part. Components of suspension system are made of metal. Therefor suspension system have a high weight that have a negative effect for all of vehicle especially for vehicle dynamics and stability properties. The main part of suspension system is a spring element. Coil springs are the most widely used spring type for independent wheel suspension for trucks and passengers vehicles. Using composite springs can less vehicle weight especially less unspring masses. It is one of the main features of composite materials. Another feature is viscoelastic properties and hysteresis effect. That can be give excellent noise and vibration properties for vehicles.


Sign in / Sign up

Export Citation Format

Share Document