On the Influence of Internal Void Size on the Fracture Stress of Constrained Solder Joints

2016 ◽  
Vol 258 ◽  
pp. 229-232
Author(s):  
Martin Lederer ◽  
Golta Khatibi ◽  
Julien Magnien

The fracture strengths of thin solder joints were investigated experimentally and with Finite Element Analysis. Due to a constraining effect, thin solder joints can carry loads which are much higher than the ultimate tensile strength of bulk solder material. On the other hand, thin solder joints show a tendency of being brittle. In fact, the tensile properties show a dependence on the quality of the intermetallic compound at the interface to the base material. Consequently, the size of microscopic defects in the intermetallic compound has a dominant influence on the fracture stress. This behavior could nicely be explained with Finite Element simulations based on strain gradient elasticity.

1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


2001 ◽  
Vol 42 (5) ◽  
pp. 809-813 ◽  
Author(s):  
Young-Eui Shin ◽  
Kyung-Woo Lee ◽  
Kyong-Ho Chang ◽  
Seung-Boo Jung ◽  
Jae Pil Jung

Author(s):  
Helmut Haase ◽  
Thilo Preß

Abstract This paper discusses the properties of possible virtual prototyping systems using finite element analysis and reports on a prototype implementation of such a system in order to illustrate the concepts. Virtual reality user interfaces will improve some existing applications and lead to new application domains. Several crucial points such as overall system architecture, speed and intuitivity of interaction, and visualization quality of results are identified and possible solutions are suggested. This includes a flexible virtual hand interaction with adjustable finger size. In particular a level of detail technique for finite element data based on element shape functions is presented which can greatly improve visualization quality as compared to common visualization approaches. This level of detail technique provides a flexible tool to adjust the exactness of visualization to rendering time (i.e., degree of interactivity) constrains. The concepts are currently being implemented within a testbed called VEIFEL (Virtual Environment Investigation of Finite ELement data). A report of this work and of resulting experiences is given.


2013 ◽  
Vol 419 ◽  
pp. 203-208
Author(s):  
Ying Yu ◽  
Yao Run Peng ◽  
Shi Xin Lan ◽  
Ping Zhou

Wave spring is a key component of multi-disc wet clutch and the response speed and running quality of multi-disc wet clutch is affected by its characteristics. This paper analyses the theoretical calculation of load-deformation relationship of wave spring. The load-deformation relationship of wave spring is obtained by ANSYS10.0 software according to its structural characteristics and actual boundary condition and compared with the calculated results based on different methods and the measured value, and then study the effect of the wave number on the load-deformation relationship of wave spring. The results show that the calculated value of finite element analysis (FEM) is closer to the measured value and the FEM has more advantages on simulation of the working performance of wave spring.


2014 ◽  
Vol 1061-1062 ◽  
pp. 421-426 ◽  
Author(s):  
Panupich Kheunkhieo ◽  
Kiatfa Tangchaichit

The purposes of this research are to explore the baseplate and actuator arm deformation which effect to the gram load which occur in the ball swaging process, the main component determining quality of assembly the head stack assembly with the actuator arm. By shooting a ball though the base plate, the component located on the head stack assembly, the base plate plastic deformation takes place and it in expand in radial direction. The base plate then adjoins with the actuator arm. Using the finite element method to reproduce the ball swaging process, we repeated to study effect of the swage press clamp and velocity. The study done by creating the three dimensionals finite element model to analyze and explain characteristics of the baseplate and actuator arm deformation which effect to gram load which effect to the ball swaging process.


1991 ◽  
Vol 226 ◽  
Author(s):  
Yi-Hsin Pao ◽  
Kuan-Luen Chen ◽  
An-Yu Kuo

AbstractA nonlinear and time dependent finite element analysis was performed on two surface mounted electronic devices subjected to thermal cycling. Constitutive equations accounting for both plasticity and creep for 37Pb/63Sn and 90Pb/10Sn solders were assumed and implemented in a finite element program ABAQUS with the aid of a user subroutine. The FE results of 37Pb/63Sn solder joints were in reasonably good agreement with the experimental data by Hall [19]. In the case of 9OPb/1OSn solder in a multilayered transistor stack, the FE results showed the existence of strong peel stress near the free edge of the joint, in addition to the anticipated shear stress. The effect of such peel stress on the crack initiation and growth as a result of thermal cycling was discussed, together with the singular behavior of both shear and peel stresses near the free edge.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Mehdi Mostafaiyan ◽  
Farhad Sharif

AbstractQuality of injection molded parts of semi-crystalline polymers has been the subject of intense interest from both analytical and industrial points of view. Crystallinity profile plays an important role in determining mechanical properties of a part and its quality. Therefore it is important to analyze the effect of injection molding parameters on the crystallinity profile of the molded parts. In this study, finite element analysis has been used to solve the equations of mass, momentum, and energy conservation simultaneously with the equation of crystallization kinetics to predict melt front, its solidification and crystallinity profile. The results from our numerical analysis have been compared with the reported experimental results. Furthermore, progress of the crystallization is proposed to be a proper criterion for estimation of the eject time. Finally, the effects of mold and melt temperature on the eject time; part temperature and average degree of crystallinity, for a specific compound are also presented.


Sign in / Sign up

Export Citation Format

Share Document