Biosynthesis of Copper Nanoparticles Using Aqueous Extracts of Aloe vera and Geranium and Bioleaching Solutions

2017 ◽  
Vol 262 ◽  
pp. 193-196 ◽  
Author(s):  
Agnieszka Pawlowska ◽  
Zygmunt Sadowski

Present work deals with synthesis of copper nanoparticles at the room temperature, using two aqueous extracts prepared from green and dry leaves of Aloe vera and Geranium (Pelargonium graveolens). Finely cut leaves were placed in the flask with the distilled water. The mixture was boiled for 15 min at the temperature of 60°C. After boiling, the mixture was centrifuged and pure extract was used for copper nanoparticles synthesis. The source of copper ions was leaching solution obtained from the bioleaching of copper shale (Kupferschiefier) using chemolithotrophic bacteria such as Acidithiobacillusfrerooxidans. The bioleaching procedure was performed in the column reactor.

Author(s):  
Chandreyi Ghosh ◽  
Sayantan Banerjee

Objective: The present study undertakes a comparative analysis of the level of secondary metabolites present in the leaf, flower and stem of the two ornamental plants, Allamanda blanchetii and Allamanda cathartica.Methods: The two plant species, Allamanda blanchetii and Allamanda cathartica were collected, washed, shade dried in room temperature and powered in mechanical grinder. Phytochemicals were extracted from the power with methanol and double distilled water. The estimation of flavonoids, polyphenols, polysaccharide were done by standard methods and the anti-oxidant activity was measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) discoloration assay.Results: Our study reveals that the flower of both species contain highest amount of secondary metabolites in crude methanolic and aqueous extracts. In case of leaf, the methanolic extracts contain higher amount of polyphenol, flavonoid and anti-oxidant property in comparison to aqueous extracts, where as the aqueous extract contain higher amount of polysaccharide content than its counterpart. In stem, crude organic extract has higher amount of polyphenol and flavonoid and the aqueous extract has higher amount of polysaccharide and anti-oxidant property.Conclusion: The flower of Allamanda cathartica and Allamanda blanchetii has higher amount of flavonoids, polyphenols, polysaccharide and the floral extracts display comparatively higher anti-oxidant property.


Author(s):  
NIKHIL NITIN NAVINDGIKAR ◽  
K. A. KAMALAPURKAR ◽  
PRASHANT S. CHAVAN

Objective: To formulate and evaluate herbal cream using Aloe Vera gel, dimethyl sulphoxide extracts of Neem (Azadirachta indica) and Tulsi (Ocimumtenuiflorum) to give multipurpose effect. Methods: The cream was prepared by using the cream base that is bee’s wax, liquid paraffin, borax, methylparaben, distilled water, rose oil, Aloe Vera gel, dimethyl sulphoxide extracts of Neem and Tulsi. The cream was prepared by using the slab technique/extemporaneous method for geometric and homogenous mixing of all the excipients and the herbal extracts. By using slab technique, we have developed three batches of our herbal cream, namely F1H, F2H, and F3H. All three batches were evaluated for different parameters like appearance, PH, viscosity, phase separation. Results: All the three formulations F1H, F2H, F3H showed good appearance, PH, adequate viscosity and no phase separation was observed. Also, the formulations F1H, F2H, F3H showed no redness, erythema and irritation during irritancy study and they were easily washable. All the three formulations F1H, F2H, F3H were stable at room temperature. Conclusion: All three herbal ingredients showed significant different activities. Based on the results, we can suggest that all the three formulations F1H, F2H, F3H were stable and can be safely used on the skin.


Author(s):  
P. A. Madden ◽  
W. R. Anderson

The intestinal roundworm of swine is pinkish in color and about the diameter of a lead pencil. Adult worms, taken from parasitized swine, frequently were observed with macroscopic lesions on their cuticule. Those possessing such lesions were rinsed in distilled water, and cylindrical segments of the affected areas were removed. Some of the segments were fixed in buffered formalin before freeze-drying; others were freeze-dried immediately. Initially, specimens were quenched in liquid freon followed by immersion in liquid nitrogen. They were then placed in ampuoles in a freezer at −45C and sublimated by vacuum until dry. After the specimens appeared dry, the freezer was allowed to come to room temperature slowly while the vacuum was maintained. The dried specimens were attached to metal pegs with conductive silver paint and placed in a vacuum evaporator on a rotating tilting stage. They were then coated by evaporating an alloy of 20% palladium and 80% gold to a thickness of approximately 300 A°. The specimens were examined by secondary electron emmission in a scanning electron microscope.


1965 ◽  
Vol 13 (02) ◽  
pp. 477-483
Author(s):  
Alwin B. Bogert

SummaryExperiments were conducted to determine why different lots of Borate Buffer reagent affect the clot lysis times obtained in the fibrinolytic assay of Streptokinase. Minerals naturally occurring in distilled water were screened individually to determine their influence on lysis. Copper was found to have a very pronounced effect in this regard on the fibrinolytic system in that low levels reduce the lysis time and high levels increase it.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1694
Author(s):  
Noemi Jardón-Maximino ◽  
Gregorio Cadenas-Pliego ◽  
Carlos A. Ávila-Orta ◽  
Víctor Eduardo Comparán-Padilla ◽  
Luis E. Lugo-Uribe ◽  
...  

Copper nanoparticles (CuNPs) functionalized with polyethyleneimine (PEI) and 4-aminobutyric acid (GABA) were used to obtain composites with isotactic polypropylene (iPP). The iPP/CuNPs composites were prepared at copper concentrations of 0.25–5.0 wt % by melt mixing, no evidence of oxidation of the CuNP was observed. Furthermore, the release of copper ions from iPP/CuNPs composites in an aqueous medium was studied. The release of cupric ions was higher in the composites with 2.5 and 5.0 wt %. These composites showed excellent antibacterial activity (AA) toward Pseudomona aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The incorporation of CuNP into the iPP polymeric matrix slightly decreased the thermal stability of the composite material but improved the crystallinity and the storage modulus. This evidence suggests that CuNPs could work as nucleating agents in the iPP crystallization process. The iPP/CuNPs composites presented better AA properties compared to similar composites reported previously. This behavior indicates that the new materials have great potential to be used in various applications that can be explored in the future.


1985 ◽  
Vol 25 (06) ◽  
pp. 945-953 ◽  
Author(s):  
Mark A. Miller ◽  
H.J. Ramey

Abstract Over the past 20 years, a number of studies have reported temperature effects on two-phase relative permeabilities in porous media. Some of the reported results, however, have been contradictory. Also, observed effects have not been explained in terms of fundamental properties known to govern two-phase flow. The purpose of this study was to attempt to isolate the fundamental properties affecting two-phase relative permeabilities at elevated temperatures. Laboratory dynamic-displacement relative permeability measurements were made on unconsolidated and consolidated sand cores with water and a refined white mineral oil. Experiments were run on 2-in. [5.1-cm] -diameter, 20-in. [52.-cm] -long cores from room temperature to 300F [149C]. Unlike previous researchers, we observed essentially no changes with temperature in either residual saturations or relative permeability relationships. We concluded that previous results may have been affected by viscous previous results may have been affected by viscous instabilities, capillary end effects, and/or difficulties in maintaining material balances. Introduction Interest in measuring relative permeabilities at elevated temperatures began in the 1960's with petroleum industry interest in thermal oil recovery. Early thermal oil recovery field operations (well heaters, steam injection, in-situ combustion) indicated oil flow rate increases far in excess of what was predicted by viscosity reductions resulting from heating. This suggested that temperature affects relative permeabilities. One of the early studies of temperature effects on relative permeabilities was presented by Edmondson, who performed dynamic displacement measurements with crude performed dynamic displacement measurements with crude and white oils and distilled water in Berea sandstone cores. Edmondson reported that residual oil saturations (ROS's) (at the end of 10 PV's of water injected) decreased with increasing temperature. Relative permeability ratios decreased with temperature at high water saturations but increased with temperature at low water saturations. A series of elevated-temperature, dynamic-displacement relative permeability measurements on clean quartz and "natural" unconsolidated sands were reported by Poston et al. Like Edmondson, Poston et al. reported a decrease in the "practical" ROS (at less than 1 % oil cut) as temperature increased. Poston et al. also reported an increase in irreducible water saturation. Although irreducible water saturations decreased with decreasing temperature, they did not revert to the original room temperature values. It was assumed that the cores became increasingly water-wet with an increase in both temperature and time; measured changes of the IFT and the contact angle with temperature increase, however, were not sufficient to explain observed effects. Davidson measured dynamic-displacement relative permeability ratios on a coarse sand and gravel core with permeability ratios on a coarse sand and gravel core with white oil displaced by distilled water, nitrogen, and superheated steam at temperatures up to 540F [282C]. Starting from irreducible water saturation, relative permeability ratio curves were similar to Edmondson's. permeability ratio curves were similar to Edmondson's. Starting from 100% oil saturation, however, the curves changed significantly only at low water saturations. A troublesome aspect of Davidson's work was that he used a hydrocarbon solvent to clean the core between experiments. No mention was made of any consideration of wettability changes, which could explain large increases in irreducible water saturations observed in some runs. Sinnokrot et al. followed Poston et al.'s suggestion of increasing water-wetness and performed water/oil capillary pressure measurements on consolidated sandstone and limestone cores from room temperature up to 325F [163C]. Sinnokrot et al confirmed that, for sandstones, irreducible water saturation appeared to increase with temperature. Capillary pressures increased with temperature, and the hysteresis between drainage and imbibition curves reduced to essentially zero at 300F [149C]. With limestone cores, however, irreducible water saturations remained constant with increase in temperature, as did capillary pressure curves. Weinbrandt et al. performed dynamic displacement experiments on small (0.24 to 0.49 cu in. [4 to 8 cm3] PV) consolidated Boise sandstone cores to 175F [75C] PV) consolidated Boise sandstone cores to 175F [75C] with distilled water and white oil. Oil relative permeabilities shifted toward high water saturations with permeabilities shifted toward high water saturations with increasing temperature, while water relative permeabilities exhibited little change. Weinbrandt et al. confirmed the findings of previous studies that irreducible water saturation increases and ROS decreases with increasing temperature. SPEJ P. 945


Author(s):  
Saurabh Singh ◽  
Bimlesh Kumar ◽  
Narendra Kumar Pandey ◽  
Barinder Kaur ◽  
Arun Kumar ◽  
...  

Objective: The present study highlights the development of a method to synthesize copper nanoparticles (CuNPs).Methods: CuNPs were developed using 0.01 M copper penta sulfate and 0.11 M of ascorbic acid (AA) and 0.03 M of cetyl trimethyl ammonium bromide solution. The synthesized CuNPs were differentiated through filtration and washed by water (deionized). CuNPs were kept in dialysis bag 70 KD in a 250 mL glass beaker along with distilled water. The assembly was kept on a magnetic stirrer for 24 h at 500 rpm. Then, the dialysis bag containing CuNPs solution was filtered by a filter assembly with 0.2 μm nylon filter. The filtered CuNPs were spray dried with the help of spray drier.Results: The prepared CuNPs were found to be 440 nm with zeta potential of −10 mV and polydispersity index 0.314.Conclusion: The investigation deciphers the promising and material technique to synthesis of CuNPs by methods for synthetic reduction utilizing strategy using AA (0.2 M) and sodium hydroxide (1 M), and Syloid 244FP.


2021 ◽  
Vol 20 (3) ◽  
pp. 145-145
Author(s):  
Ndaleh Wozerou Ng ◽  
Keambou Christian ◽  
Emmanuel Takor Ojon ◽  
Che-Ajuyo Nuela Mank ◽  
Raquel Soares Jul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document