Detailed CFD Simulations of Green Water Flow on FPSO Deck

2019 ◽  
Author(s):  
Daniel Fonseca de Carvalho e Silva
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
James Yang ◽  
Ting Liu ◽  
Wenhong Dai ◽  
Penghua Teng

In Sweden, the dam-safety guidelines call for an overhaul of many existing bottom outlets. During the opening of an outlet gate, understanding the transient air-water flow is essential for its safe operation, especially under submerged tailwater conditions. Three-dimensional CFD simulations are undertaken to examine air-water flow behaviors at both free and submerged outflows. The gate, hoisted by wire ropes and powered by AC, opens at a constant speed. A mesh is adapted to follow the gate movement. At the free outflow, the CFD simulations and model tests agree well in terms of outlet discharge capacity. Larger air vents lead to more air supply; the increment becomes, however, limited if the vent area is larger than 10 m2. At the submerged outflow, a hydraulic jump builds up in the conduit when the gate reaches approximately 45% of its full opening. The discharge is affected by the tailwater and slightly by the flow with the hydraulic jump. The flow features strong turbulent mixing of air and water, with build-up and break-up of air pockets and collisions of defragmented water bodies. The air demand rate is several times as much as required by steady-state hydraulic jump with free surface.


Author(s):  
Bas Buchner ◽  
Frederick Jaouen

This paper presents the initial investigations into the ‘Inverse’ concept for wave energy conversion, based on the maximisation of motions and green water. The ‘Inverse’ concept combines aspects of ‘overtopping’, ‘heaving’ and ‘pitching’ wave energy conversion concepts, but also adds specific aspects such as the use of green water. Instead of reducing the motions and green water as is done in normal offshore hydrodynamics, the ‘Inverse’ concepts tries to maximise the motions and green water to generate energy from the waves. Results are presented of frequency domain calculations for the motion (de-) optimisation. Improved Volume Of Fluid (iVOF) simulations are used to simulate the green water flow on the deck. It is concluded that the potential of the ‘Inverse’ concept is clear. As a result of the double connotation of the word ‘green’, this renewable energy concept could also be called the ‘green water’ concept. Further work needs to be carried out on the further optimisation of the concept.


Author(s):  
Decio Ferreto ◽  
José Miguel Reichert ◽  
Rosane Barbosa Lopes Cavalcante ◽  
Raghavan Srinivasan

The area with planted forests increased in the last decades and they have an important role in programs to sequester carbon. However, the effects of eucalyptus plantations on water resources in the Southern Grasslands biome are largely unknown, and we herein address water budget fluxes including green and blue flows. We evaluated green (canopy interception and evapotranspiration) and blue (discharge) water flows in three watersheds; two predominantly covered with Eucalyptus, either in the first years after planting or at the end of the rotation, and one with livestock-grazing grassland. We used field measurements of rainfall, streamflow and throughfall, and estimated canopy interception and evapotranspiration by water balance. Water flows in the monitored watersheds with eucalyptus plantations were influenced by forest development stage. Annual canopy interception and transpiration were always higher in the watersheds with eucalyptus than in the one with grassland, except for the transpiration in the first year after plantation in watershed with young eucalyptus. Increase in evapotranspiration (green water flow) and the consequent decrease in streamflow (blue water flow) should be considered in local water resources management. Studies on catchment hydrology and forest management for improved water use efficiency and streamflow regulation are required, particularly in understudied regions.


2019 ◽  
Vol 11 (2) ◽  
pp. 338 ◽  
Author(s):  
Leting Lyu ◽  
Xiaorui Wang ◽  
Caizhi Sun ◽  
Tiantian Ren ◽  
Defeng Zheng

Based on a land use interpretation and distributed hydrological model, soil and water assessment tool (SWAT), this study simulated the hydrological cycle in Xihe River Basin in northern China. In addition, the influence of climate variability and land use change on green water resources in the basin from 1995 to 2015 was analyzed. The results show that (1) The ENS (Nash-Sutcliffe model efficiency coefficient) and R2 (coefficient of determination) were 0.94 and 0.89, respectively, in the calibration period, and 0.89 and 0.88, respectively, in the validation period. These indicate high simulation accuracy; (2) Changes in green water flow and green water storage due to climate variability accounted for increases of 2.07 mm/a and 1.28 mm/a, respectively. The relative change rates were 0.49% and 0.9%, respectively, and the green water coefficient decreased by 1%; (3) Changes in green water flow and green water storage due to land use change accounted for increases of 69.15 mm and 48.82 mm, respectively. The relative change rates were 16.4% and 37.2%, respectively, and the green water coefficient increased by 10%; (4) Affected by both climate variability and land use change, green water resources increased by 121.3 mm and the green water coefficient increased by 9% in the Xihe River Basin. It is noteworthy that the influence of land use change was greater than that of climate variability.


2015 ◽  
Vol 104 ◽  
pp. 40-51 ◽  
Author(s):  
Youn Kyung Song ◽  
Kuang-An Chang ◽  
Kusalika Ariyarathne ◽  
Richard Mercier

2013 ◽  
Vol 10 (7) ◽  
pp. 9477-9504 ◽  
Author(s):  
C. Zang ◽  
J. Liu ◽  
L. Jiang ◽  
D. Gerten

Abstract. Human activities and climate factors both affect the availability of water resources and the sustainability of water management. Especially in already dry regions, water has become more and more scarce with increasing requirements from growing population, economic development and diet shifts. Although progress has been made in understanding variability of runoff, the impacts of climate variability and human activities on flows of both green water (actual evapotranspiration) and blue water (discharge accumulated in the river network) remain less well understood. We study the spatial patterns of blue and green water flows and the impacts on them of human activities and climate variability as simulated by the Soil and Water Assessment Tool (SWAT) for an inland Heihe river basin located in Northwest China. The results show that total green and blue water flow increased from 1980 to 2005, mainly as a result of climate variability (upward precipitation trends). Direct human activities did not significantly change the total green and blue water flow. However, land use change led to a transformation of 206 million m3 from green to blue water flow, while farmland irrigation expansion resulted in a transformation of 66 million m3 from blue to green water flow. The synchronous climate variability caused an increase of green water flow by 469 million m3 and an increase of blue water flow by 146 million m3 at the river basin level, while the geographical distribution showed an uneven change even with reductions of water flows in western sub-basins at midstream. The results are helpful to benchmark the water resources in the context of global change in the inland river basins in China. This study also provides a general approach to investigate the impacts of historical human activities and climate variability on green and blue water flows at the river basin level.


Author(s):  
Garrison Sposito

Precipitation falling onto the land surface in terrestrial ecosystems is transformed into either “green water” or “blue water.” Green water is the portion stored in soil and potentially available for uptake by plants, whereas blue water either runs off into streams and rivers or percolates below the rooting zone into a groundwater aquifer. The principal flow of green water is by evapotranspiration from soil into the atmosphere, whereas blue water moves through the channel system at the land surface or through the pore space of an aquifer. Globally, the flow of green water accounts for about two-thirds of the global flow of all water, green or blue; thus the global flow of green water, most of which is by transpiration, dominates that of blue water. In fact, the global flow of green water by transpiration equals the flow of all the rivers on Earth into the oceans. At the global scale, evapotranspiration is measured using a combination of ground-, satellite-, and model-based methods implemented over annual or monthly time-periods. Data are examined for self-consistency and compliance with water- and energy-balance constraints. At the catchment scale, average annual evapotranspiration data also must conform to water and energy balance. Application of these two constraints, plus the assumption that evapotranspiration is a homogeneous function of average annual precipitation and the average annual net radiative heat flux from the atmosphere to the land surface, leads to the Budyko model of catchment evapotranspiration. The functional form of this model strongly influences the interrelationship among climate, soil, and vegetation as represented in parametric catchment modeling, a very active area of current research in ecohydrology. Green water flow leading to transpiration is a complex process, firstly because of the small spatial scale involved, which requires indirect visualization techniques, and secondly because the near-root soil environment, the rhizosphere, is habitat for the soil microbiome, an extraordinarily diverse collection of microbial organisms that influence water uptake through their symbiotic relationship with plant roots. In particular, microbial polysaccharides endow rhizosphere soil with properties that enhance water uptake by plants under drying stress. These properties differ substantially from those of non-rhizosphere soil and are difficult to quantify in soil water flow models. Nonetheless, current modeling efforts based on the Richards equation for water flow in an unsaturated soil can successfully capture the essential features of green water flow in the rhizosphere, as observed using visualization techniques. There is also the yet-unsolved problem of upscaling rhizosphere properties from the small scale typically observed using visualization techniques to that of the rooting zone, where the Richards equation applies; then upscaling from the rooting zone to the catchment scale, where the Budyko model, based only on water- and energy-balance laws, applies, but still lacks a clear connection to current soil evaporation models; and finally, upscaling from the catchment to the global scale. This transitioning across a very broad range of spatial scales, millimeters to kilometers, remains as one of the outstanding grand challenges in green water ecohydrology.


2021 ◽  
Author(s):  
Yuping Han ◽  
Fan Xia ◽  
Huiping Huang ◽  
Wenbin Mu

Grain for Green project (GGP) initialed by China government since 1999 has achieved substantial achievements accompanied with surface runoff decrease in the Loess Plateau but impacts of large-scale afforestation on regional water resources are uncertain. Hence, the objective of this study is to explore the impact of land use change on generalized water resources and ecological water stress using blue and green water concept taking Yanhe River Basin as a case study. Soil and Water Assessment Tool (SWAT) is applied to quantify summary of green and blue water which is defined as generalized water resources, ecological water requirement of vegetation (forest and grass), agricultural water footprint and virtual water flow are considered as regional water requirements. Land use types of 1980 (scenario?), 2017 (scenario?) are input in SWAT model while keeps other parameters constant in order to isolate the influence of land use changes. Results show that average annual difference of blue, green and generalized water resources is -72.08 million m 3 , 24.34 million m 3 , -47.74 million m 3  respectively when simulation results of scenario? subtracts scenario?and it presents that land use change caused by GGP leads to decrease in blue and generalized water resources whereas increase in green water resources. SURQ in scenario?is more than that in scenario?in all the study period from 1980-2017, green water storage in scenario?is more than that in scenario? in all the study period except in 1998; whereas LATQ in scenario?is less than that in scenario? except in 2000 and 2015, GWQ in 1992, 2000 and 2015, green water flow in 1998. Blue water, green water storage and green water flow in scenario? is less than that in scenario?in the whole basin, 12.89 percent of the basin and 99.21 percent of the basin respectively. Total WF increases from 1995 to 2010 because forest WF increases significantly in this period though agricultural WF and grass WF decreases. Ecological water stress index has no obvious temporal change trend in both land use scenarios but ecological water stress index in scenario? is more than that in scenario?which illustrates that GGP leads to increase of ecological water stress from perspective of generalized water resources


Sign in / Sign up

Export Citation Format

Share Document