scholarly journals The B12 Anti-Tryptase Monoclonal Antibody Disrupts the Tetrameric Structure of Heparin-Stabilized β-Tryptase to Form Monomers That Are Inactive at Neutral pH and Active at Acidic pH

2006 ◽  
Vol 176 (5) ◽  
pp. 3165-3172 ◽  
Author(s):  
Yoshihiro Fukuoka ◽  
Lawrence B. Schwartz
2002 ◽  
Vol 156 (6) ◽  
pp. 1029-1038 ◽  
Author(s):  
Ian J. Glomski ◽  
Margaret M. Gedde ◽  
Albert W. Tsang ◽  
Joel A. Swanson ◽  
Daniel A. Portnoy

Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from a phagosome and grows in the host cell cytosol. The pore-forming cholesterol-dependent cytolysin, listeriolysin O (LLO), mediates bacterial escape from vesicles and is ∼10-fold more active at an acidic than neutral pH. By swapping dissimilar residues from a pH-insensitive orthologue, perfringolysin O (PFO), we identified leucine 461 as unique to pathogenic Listeria and responsible for the acidic pH optimum of LLO. Conversion of leucine 461 to the threonine present in PFO increased the hemolytic activity of LLO almost 10-fold at a neutral pH. L. monocytogenes synthesizing LLO L461T, expressed from its endogenous site on the bacterial chromosome, resulted in a 100-fold virulence defect in the mouse listeriosis model. These bacteria escaped from acidic phagosomes and initially grew normally in cells and spread cell to cell, but prematurely permeabilized the host membrane and killed the cell. These data show that the acidic pH optimum of LLO results from an adaptive mutation that acts to limit cytolytic activity to acidic vesicles and prevent damage in the host cytosol, a strategy also used by host cells to compartmentalize lysosomal hydrolases.


Biochemistry ◽  
1989 ◽  
Vol 28 (13) ◽  
pp. 5647-5657 ◽  
Author(s):  
Michael Kouchakdjian ◽  
Edmund Marinelli ◽  
Xiaolian Gao ◽  
Francis Johnson ◽  
Arthur Grollman ◽  
...  

2009 ◽  
Vol 7 (3) ◽  
pp. 465-470 ◽  
Author(s):  
Bernardo Baldisserotto ◽  
Carlos Eduardo Copatti ◽  
Levy Carvalho Gomes ◽  
Edsandra Campos Chagas ◽  
Richard Philip Brinn ◽  
...  

Fishes that live in the Amazonian environment may be exposed to several kinds of waters: "black waters", containing high dissolved organic carbon and acidic pH, "white waters", with ten fold higher Ca2+ concentrations than black waters and neutral pH, and "clear waters", with two fold higher Ca2+ concentrations than black waters and also neutral pH. Therefore, the aim of the present study was to analyze Ca2+ fluxes in the facultative air-breather Hoplosternum littorale (tamoatá) exposed to different Amazonian waters. Fishes were acclimated in well water (similar to clear water) and later placed in individual chambers for Ca2+ fluxes measurements. After 4 h, water from the chambers was replaced by a different type of water. Transfer of tamoatás to ion-poor black or acidic black water resulted in net Ca2+ loss only in the first 2 h of experiment. However, transfer from black or acidic black water to white water led to only net Ca2+ influxes. The results obtained allowed us to conclude that transfer of tamoatás to ion-poor waters (black and acidic black water) led to transient net Ca2+ loss, while the amount of Ca2+ in the ion-rich white water seems adequate to prevent Ca2+ loss after transfer. Therefore, transfer of tamoatás between these Amazonian waters does not seem to result in serious Ca2+ disturbance.


1972 ◽  
Vol 129 (5) ◽  
pp. 1131-1138 ◽  
Author(s):  
F. Auricchio ◽  
L. Mollica ◽  
A. Liguori

Inactivation of tyrosine aminotransferase induced in vivo by triamcinolone was studied in a homogenate incubated at neutral pH values. The integrity and the presence of subcellular particles together with a compartment of acidic pH are necessary for inactivation of tyrosine aminotransferase. It is suggested that tyrosine aminotransferase is inactivated inside lysosomes. The system responsible for inactivation of tyrosine aminotransferase was partially purified and identified with lysosomal cathepsins B and B1. Inactivation of tyrosine aminotransferase in liver slices is controlled by the amino acid concentration and strongly stimulated by cysteine. 3,3′,5-Tri-iodo-l-thyronine reversibly and strongly decreases the rate of inactivation of tyrosine aminotransferase. The effect is not due to an increased rate of tyrosine aminotransferase synthesis.


2012 ◽  
Vol 27 ◽  
pp. 61-66 ◽  
Author(s):  
Kedar Nath Ghimire

Removal of fluoride is investigated onto several metal ions loaded phosphorylated orange juice residue and commercially available alumina. The experimental results revealed that cerium (IV) loaded phosphorylated orange waste indicated excellent fluoride removal efficiency at acidic pH range and while that lanthanum loaded at neutral pH range. Both the metal loaded adsorbents are found superior to the commercially available activated alumina.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6660 J. Nepal Chem. Soc., Vol. 27, 2011 61-66 


2009 ◽  
Vol 284 (24) ◽  
pp. 16164-16169 ◽  
Author(s):  
Diana Ortiz ◽  
Marco A. Sanchez ◽  
Hans P. Koch ◽  
H. Peter Larsson ◽  
Scott M. Landfear

Parasitic protozoa are unable to synthesize purines de novo and must import preformed purine nucleobases or nucleosides from their hosts. Leishmania major expresses two purine nucleobase transporters, LmaNT3 and LmaNT4. Previous studies revealed that at neutral pH, LmaNT3 is a broad specificity, high affinity nucleobase transporter, whereas LmaNT4 mediates the uptake of only adenine. Because LmaNT4 is required for optimal viability of the amastigote stage of the parasite that lives within acidified phagolysomal vesicles of mammalian macrophages, the function of this permease was examined under acidic pH conditions. At acidic pH, LmaNT4 acquires the ability to transport adenine, hypoxanthine, guanine, and xanthine with Km values in the micromolar range, indicating that this transporter is activated at low pH. Thus, LmaNT4 is an acid-activated purine nucleobase transporter that functions optimally under the physiological conditions the parasite is exposed to in the macrophage phagolysosome. In contrast, LmaNT3 functions optimally at neutral pH. Two-electrode voltage clamp experiments performed on LmaNT3 and LmaNT4 expressed in Xenopus oocytes revealed substrate-induced inward directed currents at acidic pH, and application of substrates induced acidification of the oocyte cytosol. These observations imply that LmaNT3 and LmaNT4 are nucleobase/proton symporters.


1986 ◽  
Vol 240 (3) ◽  
pp. 847-856 ◽  
Author(s):  
N Hibi ◽  
S Arii ◽  
T Iizumi ◽  
T Nemoto ◽  
T M Chu

A human hybridoma clone (4E3) has been established by fusing lymphocytes from a lymph node taken from a breast cancer patient and human lymphoblastoid cells, LICR-LON-HMy2, by the poly(ethylene glycol) method. 4E3 has been stabilized and continued to secrete IgMk antibody into culture medium (greater than 10 micrograms/ml) for over 1 year. The following characteristics of the antigen strongly suggested that 4E3 recognizes liver-type aldolase B (EC 4.1.2.13): the Mr of the native molecule is 160,000 and that of the subunit is 40,000, and thus it has a tetrameric structure of identical subunits; the antigen is abundant in the liver and kidney of human, mouse and rabbit, and is localized by immunohistochemical methods in the cytoplasm of hepatocytes and in the proximal tubules of the kidney; the antigen is precipitable by 50-80% saturation with (NH4)2SO4; the antigen shows charge-dependent heterogeneity on DEAE-cellulose chromatography. To confirm this notion, aldolase B was purified to homogeneity from the liver of human, mouse and rabbit by phosphocellulose chromatography. During the chromatographic purification, the antigen activity as assayed by enzyme-linked immunosorbent assay (e.l.i.s.a.) was superimposed on the enzymic activity of aldolase. Furthermore, monoclonal antibody 4E3 strongly reacted with purified aldolase B in SDS/polyacrylamide-gel electrophoresis followed by Western blotting and also in e.l.i.s.a. using microplates coated with purified enzyme. The reaction between aldolase B and 4E3 activated the human complement system as assessed by the attachment of C3 to the immune complex of aldolase B and 4E3.


2019 ◽  
Author(s):  
Marine Cargoet ◽  
Vincent Diemer ◽  
Laurent Raibaut ◽  
Elizabeth Lissy ◽  
Benoît Snella ◽  
...  

The bis(2-sulfanylethyl)amido (SEA)-mediated ligation has been introduced in 2010 as a novel chemoselective peptide bond forming reaction. SEA ligation is a useful reaction for protein total synthesis that is complementary to the native chemical ligation (NCL). In particular, SEA ligation proceeds efficiently in a wide range of pH, from neutral pH to pH 3-4. Thus, the pH can be chosen to optimize the solubility of the peptide segments or final product. It can be also chosen to facilitate the formation of difficult junctions, since the rate of SEA ligation increases significantly by decreasing the pH from 7.2 to 4.0. Here we describe a protocol for SEA ligation at pH 5.5 in the presence of 4-mercaptophenylacetic acid (MPAA) or at pH 4.0 in the presence of a newly developed diselenol catalyst. The protocols describe the formation of a valyl-cysteinyl peptide bond between two model peptides.<br>


2021 ◽  
Vol 10 (9) ◽  
pp. e12210917753
Author(s):  
Daniel José Pimentel Bonfim ◽  
Fernanda Maria Garcia ◽  
Cecília Braga Laposy ◽  
Rogério Giuffrida ◽  
Gisele Alborghetti Nai ◽  
...  

Introduction: Cadmium is a heavy metal found in the environment that is used industrially; however, it also causes hepato- and nephrotoxic effects. Objective: To evaluate the effect of drinking water pH on the hepato- and nephrotoxicity caused by chronic cadmium poisoning. Material and Methods: We used 90 adult, male Wistar albino rats divided into 6 groups (n = 15): GC5 received a solution of cadmium chloride in drinking water with an acidic pH (pH 5.0); GC7 received a solution of cadmium chloride (400 mg/L) in drinking water with a neutral pH (pH 7.0 water); GC8 received a solution of cadmium chloride in water with an alkaline pH (pH 8.0); GWC5 received drinking water with an acidic pH (pH 5.0); GWC7 received drinking water with a neutral pH (pH 7.0); GWC8 received drinking water with an alkaline pH (pH 8.0). The animals were euthanized 6 months after the start of the experiment. We performed tests for hepatic and renal function and conducted liver and renal histopathology. Results: Water with an acidic pH caused alterations in ALP, ALT and urea in animals exposed to cadmium (P<0.05). In the liver, the majority of animals from the GC7 (57.1%) and GC5 (53.3%) groups showed diffuse microvesicular steatosis, while other groups showed no steatosis (P>0.05). In the kidney, the majority of animals from the GC7 (78.6%) and GWC5 (71.4%) groups showed tubular hydropic degeneration; however, these data were only statistically different from the GWC7 group (P<0.05). Conclusion: Exposure to cadmium in water with an acidic pH led to higher elevations of serum ALP, AST and urea, suggesting that the pH of drinking water influences the hepato- and nephrotoxic effects of this heavy metal.


2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Mihaiela Andoni ◽  
Aurel Iovi ◽  
Petru Negrea ◽  
Lavinia Lupa ◽  
Adina Negrea ◽  
...  

This paper presents an experimental work regarding the optimal conditions of pH for removing mercury from a contaminated soil sample using 0,1M solution of KI. A test stand with a column packed with contaminated soil has been done. A KI solution with neutral pH passes through the column, then a KI solution with acidic pH passes through another similar column and a KI solution with basic pH through the third column. It was collected periodically 10 mL fraction volume. The extracted mercury concentration from the solution is determined by atomic absorption spetrophotometry The results shows that the optimal conditions for cleaning the soil are using an acidic KI solution with a pH = 1, 5 � 2 and 150 mL of KI solution meaning 15 fractions of 10 mL each.


Sign in / Sign up

Export Citation Format

Share Document