scholarly journals Corrosion Inhibition Effect of 4-(2-Diethylamino-Ethylsulfonyl)-Phthalonitrile and 4,5-Bis(Hexylsulfonyl)-Phthalonitrile

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Esma Sezer ◽  
Belkis Ustamehmetoğlu ◽  
Zehra Altuntaş Bayır ◽  
Kerim Çoban ◽  
Ayfer Kalkan

Inhibition of stainless steel corrosion in a 3.0 M NaCl solution by 4-(2-diethylamino-ethylsulfanyl)-phthalonitrile (DAESPN) and 4,5-bis(hexylsulfonyl)-phthalonitrile (Bis-HSPN) was investigated by polarization and electrochemical impedance spectroscopy (EIS) measurements. The values of cathodic (βc) and anodic (βa) Tafel slopes, , , corrosion rate (CR), and inhibition efficiences (IE%) obtained from polarization curves and polarization resistance (), double-layer capacitance (), specific capacitance () values were obtained from EIS. Double-layer capacitance differences in the presence and absence of inhibitors were also obtained from EIS measurements as suggested in the literature in order to investigate the interaction of them with metal surface. Results show that both DAESPN and Bis-HSPN are effective in cathodic reaction. Impedance measurements suggest higher surface coverage for DAESPN. The interaction between the inhibitor and the stainless steel was investigated by the adsorption isotherm. Langmuir adsorption isotherm was applied and values were obtained and found as , and 9.2 kJ, 12.5 kJ for DAESPN and Bis-HSPN, respectively, which suggests the electrostatic interaction between charged metal surface and charged organic molecules.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 571
Author(s):  
Aurelia Elena Tudose ◽  
Ioana Demetrescu ◽  
Florentina Golgovici ◽  
Manuela Fulger

The aim of this work was to study the corrosion behavior of a Fe-Cr-Ni alloy (310 H stainless steel) in water at a supercritical temperature of 550 °C and a pressure of 250 atm for up to 2160 h. At supercritical temperature, water is a highly aggressive environment, and the corrosion of structural materials used in a supercritical water-cooled nuclear reactor (SCWR) is a critical problem. Selecting proper candidate materials is one key issue for the development of SCWRs. After exposure to deaerated supercritical water, the oxides formed on the 310 H SS surface were characterized using a gravimetric analysis, a metallographic analysis, and electrochemical methods. Gravimetric analysis showed that, due to oxidation, all the tested samples gained weight, and oxidation of 310H stainless steel at 550 °C follows parabolic rate, indicating that it is driven by a diffusion process. The data obtained by microscopic metallography concord with those obtained by gravimetric analysis and show that the oxides layer has a growing tendency in time. At the same time, the results obtained by electrochemical impedance spectroscopy (EIS) measurements indicate the best corrosion resistance of Cr, and (Fe, Mn) Cr2O4 oxides developed on the samples surface after 2160 h of oxidation. Based on the results obtained, a strong correlation between gravimetric analysis, metallographic analysis, and electrochemical methods was found.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 454 ◽  
Author(s):  
Arman Dastpak ◽  
Kirsi Yliniemi ◽  
Mariana de Oliveira Monteiro ◽  
Sarah Höhn ◽  
Sannakaisa Virtanen ◽  
...  

In this study, a waste of biorefinery—lignin—is investigated as an anticorrosion coating on stainless steel. Corrosion behavior of two lignin types (hardwood beech and softwood spruce) was studied by electrochemical measurements (linear sweep voltammetry, open circuit potential, potentiostatic polarization, cyclic potentiodynamic polarization, and electrochemical impedance measurements) during exposure to simulated body fluid (SBF) or phosphate buffer (PBS). Results from linear sweep voltammetry of lignin-coated samples, in particular, demonstrated a reduction in corrosion current density between 1 and 3 orders of magnitude cf. blank stainless steel. Furthermore, results from cross cut adhesion tests on lignin-coated samples demonstrated that the best possible adhesion (grade 0) of ISO 2409 standard was achieved for the investigated novel coatings. Such findings suggest that lignin materials could transform the field of organic coatings towards more sustainable alternatives by replacing non-renewable polymer coatings.


Author(s):  
Aqib Muzaffar ◽  
Keerthana Muthusamy ◽  
M. Basheer Ahamed

Ferrous nitrate/nickel oxide {Fe(NO3)2–NiO} nanocomposite was synthesized via two-step facile hydrothermal route. The nanocomposite exhibits crystalline structure as unveiled by X-ray diffraction (XRD) pattern, while as the scanning electron microscope (SEM) images divulge spherical morphologies for both Fe(NO3)2 as well as NiO nanoparticles differentiating from each other in size. Cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques were used to investigate supercapacitive behavior of the symmetrically fabricated nanocomposite electrode configuration using aqueous KOH as the electrolyte. The CV analyses demonstrate dominant electrical double layer capacitance (EDLC) behavior in the potential range of 0–1 V. From charge–discharge curves, the maximum specific capacitance calculated was 460 F g−1 corresponding to the energy density of 16 W h kg−1 at a high power density of 250 W kg−1. EIS data affiliate well with the CV and GCD results justifying the maximum contribution of specific capacitance due to double layer capacitance. The nanocomposite retained 84% of its original capacitance after 1000 cycles and yielded maximum efficiency of 78%.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Chikkur B. Pradeep Kumar ◽  
Kikkeri N. Mohana

Achyranthes aspera (AA) extracts were studied as corrosion inhibitor for mild steel (MS) in industrial water medium using mass loss and electrochemical techniques. The results of the study revealed that AA extracts inhibit MS corrosion through adsorption process following Langmuir adsorption isotherm model. The protection efficiency increased with increase in inhibitor concentration and decreased with temperature. The electrochemical impedance spectroscopy (EIS) measurements showed that the charge transfer resistance increases with increase in the concentration of AA extracts. The polarization curves obtained indicate that AA extracts act as mixed type of inhibitor. Scanning electron microscopy (SEM) was used to analyze the surface adsorbed film.


Author(s):  
Margarita Baitimirova ◽  
Agnese Osite ◽  
Juris Katkevich ◽  
Arturs Viksna

Electrochemical Characteristics of Particulate Matter The current work is dedicated to electrochemical impedance spectra analysis of the fine and coarse airborne particulate matter sampled on the glass fibre filters in Riga city air. The cyclic voltammograms, impedance spectra and double layer capacitance spectra of particulate matter were obtained after the pre-treatment of samples. The equivalent circuit method and the statistical method were used for impedance spectra analysis. Analyzing the impedance spectra, it was concluded that the impedance of both - fine and coarse particles heated in N2 flow does not change by aerosol mass concentration variations. On the other hand, the impedance of particulate matter heated in O2 flow increases, by increasing PM10 mass concentration. Describing the spectra of double layer capacitance, it was observed that the double layer capacitance of aerosols heated in N2 flow did not change, by mass concentration and size variations. However, by increasing mass concentration of coarse aerosols heated in O2 flow, the double layer capacitance reduced.


2020 ◽  
Vol 38 (2) ◽  
pp. 137-149
Author(s):  
Mohamed Ouknin ◽  
Abderrahmane Romane ◽  
Jean-Pierre Ponthiaux ◽  
Jean Costa ◽  
Lhou Majidi

AbstractThe inhibition effect of Thymus zygis subsp. gracilis (TZ) on mild steel corrosion in 1 m hydrochloric acid has been investigated by weight loss measurements, surface analysis [scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX), three-dimensional (3D) profilometry, and Fourier transform infrared analysis], potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). Gravimetric results indicate that TZ exhibits good inhibition efficiency of 80.40% attained at 3 g/l. Polarization measurements show that the studied inhibitor is a mixed type. EIS measurements revealed that the charge transfer resistance increases with increasing concentration of TZ, which suggests a Langmuir adsorption isotherm model. Based on SEM-EDX and 3D profilometry, it appears that the surface is remarkably improved in the presence of TZ oil compared to that exposed to the acid medium without TZ oil. From the obtained results, it can be concluded that this oil is a new natural substance that can be used against material corrosion in aggressive medium.


2017 ◽  
Vol 35 (2) ◽  
pp. 111-121 ◽  
Author(s):  
Sumithra Kadapparambil ◽  
Kavita Yadav ◽  
Manivannan Ramachandran ◽  
Noyel Victoria Selvam

AbstractThe use of Tectona grandis leaf extract as a green corrosion inhibitor for stainless steel 304 (SS304) in 2 m hydrochloric acid was investigated using electrochemical techniques. Potentiodynamic polarization studies with different inhibitor concentrations showed that the inhibitor is of mixed type, which works by affecting both cathodic and anodic reactions. Adsorption analysis using the potentiodynamic polarization and electrochemical impedance spectroscopy runs result in standard free energy of adsorption values between −20 kJ mol−1 and −40 kJ mol−1, indicating a comprehensive adsorption, which is a mixture of both physisorption and chemisorptions processes. Fourier transform infrared spectroscopy studies show the appearance of new peaks and shift in peak positions at some locations with the use of an inhibitor, which indicates the interaction between the inhibitor molecules and metal surface. Contact angle analysis indicates the formation of hydrophobic film on the metal surface.


2018 ◽  
Vol 15 (2) ◽  
pp. 6262-6274
Author(s):  
Sylvester Obaike Adejo ◽  
Stephen Gbaoron Yiase ◽  
Joseph Aondoaver Gbertyo ◽  
Emmanuel Onah Ojah

Corrosion inhibition characteristics of aspartic acid on  mild steel corrosion in 0.5 M H2SO4 was investigated using weight loss, acidimetry, and electrochemical impedance spectroscopy (EIS). Analysis of the metal surface morphology, uninhibited and inhibited, was carried out through scanned electron microscope. The results showed that the inhibition efficiency increased with increase in inhibitors concentration and rise in temperature for all methods used. The highest v efficiency of  32.36 %, 66.26 % and 80.40 % were obtained for weight loss, acidimetry and EIS, respectively. The low value of efficiency for weight loss compared to other methods should signify the limitation for the method. The increase in efficiency with rise in temperature is a feature of chemical adsorption, which was confoirmed by the value of parameter b of the Adejo-Ekwenchi adsorption isotherm (AEI) model. Values of free energy of adsorption, ?Gads were all negative for all the methods, which means the adsorption processes were spontaneous. The heats of adsorption, Qads values were all positive, implying that the processes were endothermic. Values of activation energy were fairly constant, which is an evident to support the proposed chemical adsorption mechanism. The negative sign in the values of entropy of adsorption, ?Sads is an indication  that the activated complex in the rate-determining step was associative. The data obtained was tested with several isotherms, but found to best fit into the El-Awady, Freundlich and Tempkin adsorption isotherm models.


Sign in / Sign up

Export Citation Format

Share Document