scholarly journals Copper Modulation as a Therapy for Alzheimer's Disease?

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Yasmina Manso ◽  
Gemma Comes ◽  
Juan Hidalgo ◽  
Ashley I. Bush ◽  
Paul A. Adlard

The role of metals in the pathophysiology of Alzheimer's disease (AD) has gained considerable support in recent years, with both in vitro and in vivo data demonstrating that a mis-metabolism of metal ions, such as copper and zinc, may affect various cellular cascades that ultimately leads to the development and/or potentiation of AD. In this paper, we will provide an overview of the preclinical and clinical literature that specifically relates to attempts to affect the AD cascade by the modulation of brain copper levels. We will also detail our own novel animal data, where we treated APP/PS1 (7-8 months old) mice with either high copper (20 ppm in the drinking water), high cholesterol (2% supplement in the food) or a combination of both and then assessedβ-amyloid (Aβ) burden (soluble and insoluble Aβ), APP levels and behavioural performance in the Morris water maze. These data support an interaction between copper/cholesterol and both Aβand APP and further highlight the potential role of metal ion dyshomeostasis in AD.

2020 ◽  
Vol 218 (1) ◽  
Author(s):  
Fares Bassil ◽  
Emily S. Meymand ◽  
Hannah J. Brown ◽  
Hong Xu ◽  
Timothy O. Cox ◽  
...  

α-Synuclein (α-syn) and tau aggregates are the neuropathological hallmarks of Parkinson’s disease (PD) and Alzheimer’s disease (AD), respectively, although both pathologies co-occur in patients with these diseases, suggesting possible crosstalk between them. To elucidate the interactions of pathological α-syn and tau, we sought to model these interactions. We show that increased accumulation of tau aggregates occur following simultaneous introduction of α-syn mousepreformed fibrils (mpffs) and AD lysate–derived tau seeds (AD-tau) both in vitro and in vivo. Interestingly, the absence of endogenous mouse α-syn in mice reduces the accumulation and spreading of tau, while the absence of tau did not affect the seeding or spreading capacity of α-syn. These in vivo results are consistent with our in vitro data wherein the presence of tau has no synergistic effects on α-syn. Our results point to the important role of α-syn as a modulator of tau pathology burden and spreading in the brains of AD, PDD, and DLB patients.


2008 ◽  
Vol 20 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Joanne Ryan ◽  
Jaqueline Scali ◽  
Isabelle Carriere ◽  
Karen Ritchie ◽  
Marie-Laure Ancelin

ABSTRACTA plethora of in vitro and in vivo studies have supported the neuroprotective role of estrogens and their impact on the neurotransmitter systems implicated in cognition. Recent hormonal replacement therapy (HRT) trials in non-demented postmenopausal women suggest a temporary positive effect (notably on verbal memory), and four meta-analyses converge to suggest a possible protective effect in relation to Alzheimer's disease (reducing risk by 29 to 44%). However, data from the only large randomized controlled trial published to date, the Women's Health Initiative Memory Study, did not confirm these observations and have even suggested an increase in dementia risk for women using HRT compared to controls. Apart from methodological differences, one key shortcoming of this trial has probably been the focus on late-onset (postmenopausal) hormonal changes, i.e. at a time when the neurodegenerative process has already begun and without taking into account individual lifetime exposure to hormone variability. Multifactorial models based on an exhaustive view of all hormonal events throughout the reproductive life (rather than on a specific exposure to a given steroid) together with other risk factors (notably genetic risk factors related to estrogen receptor polymorphisms) should be explored to clarify the role of hormonal risk factors, or protective factors for cognitive dysfunction and dementia.


2015 ◽  
Vol 115 (3) ◽  
pp. 449-465 ◽  
Author(s):  
K. G. Goozee ◽  
T. M. Shah ◽  
H. R. Sohrabi ◽  
S. R. Rainey-Smith ◽  
B. Brown ◽  
...  

AbstractCurcumin derived from turmeric is well documented for its anti-carcinogenic, antioxidant and anti-inflammatory properties. Recent studies show that curcumin also possesses neuroprotective and cognitive-enhancing properties that may help delay or prevent neurodegenerative diseases, including Alzheimer’s disease (AD). Currently, clinical diagnosis of AD is onerous, and it is primarily based on the exclusion of other causes of dementia. In addition, phase III clinical trials of potential treatments have mostly failed, leaving disease-modifying interventions elusive. AD can be characterised neuropathologically by the deposition of extracellular β amyloid (Aβ) plaques and intracellular accumulation of tau-containing neurofibrillary tangles. Disruptions in Aβ metabolism/clearance contribute to AD pathogenesis. In vitro studies have shown that Aβ metabolism is altered by curcumin, and animal studies report that curcumin may influence brain function and the development of dementia, because of its antioxidant and anti-inflammatory properties, as well as its ability to influence Aβ metabolism. However, clinical studies of curcumin have revealed limited effects to date, most likely because of curcumin’s relatively low solubility and bioavailability, and because of selection of cohorts with diagnosed AD, in whom there is already major neuropathology. However, the fresh approach of targeting early AD pathology (by treating healthy, pre-clinical and mild cognitive impairment-stage cohorts) combined with new curcumin formulations that increase bioavailability is renewing optimism concerning curcumin-based therapy. The aim of this paper is to review the current evidence supporting an association between curcumin and modulation of AD pathology, including in vitro and in vivo studies. We also review the use of curcumin in emerging retinal imaging technology, as a fluorochrome for AD diagnostics.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2019 ◽  
Vol 20 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Chi Zhang ◽  
Zhichun Gu ◽  
Long Shen ◽  
Xianyan Liu ◽  
Houwen Lin

Background: To deliver drugs to treat Alzheimer’s Disease (AD), nanoparticles should firstly penetrate through blood brain barrier, and then target neurons. Methods: Recently, we developed an Apo A-I and NL4 dual modified nanoparticle (ANNP) to deliver beta-amyloid converting enzyme 1 (BACE1) siRNA. Although promising in vitro results were obtained, the in vivo performance was not clear. Therefore, in this study, we further evaluated the in vivo neuroprotective effect and toxicity of the ANNP/siRNA. The ANNP/siRNA was 80.6 nm with good stability when incubated with serum. In vivo, the treatment with ANNP/siRNA significantly improves the spatial learning and memory of APP/PS1 double transgenic mice, as determined by mean escape latency, times of crossing the platform area during the 60 s swimming and the percentage of the distance in the target quadrant. Results and Conclusion: After the treatment, BACE1 RNA level of ANNP/siRNA group was greatly reduced, which contributed a good AD treatment outcome. Finally, after repeated administration, the ANNP/siRNA did not lead to significant change as observed by HE staining of main organs, suggesting the good biocompatibility of ANNP/siRNA. These results demonstrated that the ANNP was a good candidate for AD targeting siRNA delivery.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2020 ◽  
Vol 20 (12) ◽  
pp. 1059-1073 ◽  
Author(s):  
Ahmad Abu Turab Naqvi ◽  
Gulam Mustafa Hasan ◽  
Md. Imtaiyaz Hassan

Microtubule-associated protein tau is involved in the tubulin binding leading to microtubule stabilization in neuronal cells which is essential for stabilization of neuron cytoskeleton. The regulation of tau activity is accommodated by several kinases which phosphorylate tau protein on specific sites. In pathological conditions, abnormal activity of tau kinases such as glycogen synthase kinase-3 β (GSK3β), cyclin-dependent kinase 5 (CDK5), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and microtubule affinity regulating kinase (MARK) lead to tau hyperphosphorylation. Hyperphosphorylation of tau protein leads to aggregation of tau into paired helical filaments like structures which are major constituents of neurofibrillary tangles, a hallmark of Alzheimer’s disease. In this review, we discuss various tau protein kinases and their association with tau hyperphosphorylation. We also discuss various strategies and the advancements made in the area of Alzheimer's disease drug development by designing effective and specific inhibitors for such kinases using traditional in vitro/in vivo methods and state of the art in silico techniques.


Author(s):  
Wen-Dai Bao ◽  
Pei Pang ◽  
Xiao-Ting Zhou ◽  
Fan Hu ◽  
Wan Xiong ◽  
...  

AbstractIron homeostasis disturbance has been implicated in Alzheimer’s disease (AD), and excess iron exacerbates oxidative damage and cognitive defects. Ferroptosis is a nonapoptotic form of cell death dependent upon intracellular iron. However, the involvement of ferroptosis in the pathogenesis of AD remains elusive. Here, we report that ferroportin1 (Fpn), the only identified mammalian nonheme iron exporter, was downregulated in the brains of APPswe/PS1dE9 mice as an Alzheimer’s mouse model and Alzheimer’s patients. Genetic deletion of Fpn in principal neurons of the neocortex and hippocampus by breeding Fpnfl/fl mice with NEX-Cre mice led to AD-like hippocampal atrophy and memory deficits. Interestingly, the canonical morphological and molecular characteristics of ferroptosis were observed in both Fpnfl/fl/NEXcre and AD mice. Gene set enrichment analysis (GSEA) of ferroptosis-related RNA-seq data showed that the differentially expressed genes were highly enriched in gene sets associated with AD. Furthermore, administration of specific inhibitors of ferroptosis effectively reduced the neuronal death and memory impairments induced by Aβ aggregation in vitro and in vivo. In addition, restoring Fpn ameliorated ferroptosis and memory impairment in APPswe/PS1dE9 mice. Our study demonstrates the critical role of Fpn and ferroptosis in the progression of AD, thus provides promising therapeutic approaches for this disease.


Sign in / Sign up

Export Citation Format

Share Document