3D Packaging Solution Providing DDR & LPDDR Co-Support for Ultrabooks and Next Generation Servers

2012 ◽  
Vol 2012 (DPC) ◽  
pp. 002285-002315
Author(s):  
Simon McElrea ◽  
Vern Solberg

Effective 3D stacking of DRAM devices can offer many benefits; improved performance, increased component density and greater surface area utilization. To enable the new generations of processors to reach their performance potential many manufacturers have developed more efficient interface formats that enable greater memory bandwidth. This revolution in performance driven electronic systems continues to challenge the IC packaging industry. The challenge is clear. To ensure that the memory functions are able to support the increased signal speed, product developers will need to explore more innovative 3D package assembly techniques and process refinement methodologies. The methodology selected for package assembly, however, must consider process complexity, the costs associated with each process, overall package assembly yield and, from the users perspective, end product reliability. For some applications companies have had limited success in stacking die elements directly onto an interposer substrate using wire-bond processes. High performance DRAM die, however, is especially difficult to stack. This is due to the center positioned wire-bond sites. This factor has complicated the DRAM die stacking process and because of the excessively long wire-bond interface, functional signal speed is significantly degraded. Stacking individually packaged DRAM (package-on-package) has had considerable success but the package outline dimension and package height can be excessive. In this paper the authors will introduce a very innovative and very thin 3D package developed specifically for center-bond pad DRAM die. The package assembly methodology promises to remain economical because it requires no special die level process steps and it can utilize the existing package assembly infrastructure. Additionally, data compiled during extensive performance and reliability modeling will be presented along with the results from actual physical qualification testing.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1130
Author(s):  
Mariana Pires Figueiredo ◽  
Ana Borrego-Sánchez ◽  
Fátima García-Villén ◽  
Dalila Miele ◽  
Silvia Rossi ◽  
...  

This work presents the development of multifunctional therapeutic membranes based on a high-performance block copolymer scaffold formed by polyether (PE) and polyamide (PA) units (known as PEBA) and layered double hydroxide (LDH) biomaterials, with the aim to study their uses as wound dressings. Two LDH layer compositions were employed containing Mg2+ or Zn2+, Fe3+ and Al3+ cations, intercalated with chloride anions, abbreviated as Mg-Cl or Zn-Cl, or intercalated with naproxenate (NAP) anions, abbreviated as Mg-NAP or Zn-NAP. Membranes were structurally and physically characterized, and the in vitro drug release kinetics and cytotoxicity assessed. PEBA-loading NaNAP salt particles were also prepared for comparison. Intercalated NAP anions improved LDH–polymer interaction, resulting in membranes with greater mechanical performance compared to the polymer only or to the membranes containing the Cl-LDHs. Drug release (in saline solution) was sustained for at least 8 h for all samples and release kinetics could be modulated: a slower, an intermediate and a faster NAP release were observed from membranes containing Zn-NAP, NaNAP and Mg-NAP particles, respectively. In general, cell viability was higher in the presence of Mg-LDH and the membranes presented improved performance in comparison with the powdered samples. PEBA containing Mg-NAP sample stood out among all membranes in all the evaluated aspects, thus being considered a great candidate for application as multifunctional therapeutic dressings.


Author(s):  
Yoobeen Lee ◽  
Jin Won Jung ◽  
Jin Seok Lee

The reduction of intrinsic defects, including vacancies and grain boundaries, remains one of the greatest challenges to produce high-performance transition metal dichalcogenides (TMDCs) electronic systems. A deeper comprehension of the...


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 589
Author(s):  
Sivagowri Shanmugaratnam ◽  
Balaranjan Selvaratnam ◽  
Aravind Baride ◽  
Ranjit Koodali ◽  
Punniamoorthy Ravirajan ◽  
...  

Earth–abundant transition metal chalcogenide materials are of great research interest for energy production and environmental remediation, as they exhibit better photocatalytic activity due to their suitable electronic and optical properties. This study focuses on the photocatalytic activity of flower-like SnS2 nanoparticles (composed of nanosheet subunits) embedded in TiO2 synthesized by a facile hydrothermal method. The materials were characterized using different techniques, and their photocatalytic activity was assessed for hydrogen evolution reaction and the degradation of methylene blue. Among the catalysts studied, 10 wt. % of SnS2 loaded TiO2 nanocomposite shows an optimum hydrogen evolution rate of 195.55 µmolg−1, whereas 15 wt. % loading of SnS2 on TiO2 exhibits better performance against the degradation of methylene blue (MB) with the rate constant of 4.415 × 10−4 s−1 under solar simulated irradiation. The improved performance of these materials can be attributed to the effective photo-induced charge transfer and reduced recombination, which make these nanocomposite materials promising candidates for the development of high-performance next-generation photocatalyst materials. Further, scavenging experiments were carried out to confirm the reactive oxygen species (ROS) involved in the photocatalytic degradation. It can be observed that there was a 78% reduction in the rate of degradation when IPA was used as the scavenger, whereas around 95% reduction was attained while N2 was used as the scavenger. Notably, very low degradation (<5%) was attained when the dye alone was directly under solar irradiation. These results further validate that the •OH radical and the superoxide radicals can be acknowledged for the degradation mechanism of MB, and the enhancement of degradation efficiency may be due to the combined effect of in situ dye sensitization during the catalysis and the impregnation of low bandgap materials on TiO2.


2012 ◽  
Vol 52 (9-10) ◽  
pp. 1966-1970 ◽  
Author(s):  
R. Pelzer ◽  
M. Nelhiebel ◽  
R. Zink ◽  
S. Wöhlert ◽  
A. Lassnig ◽  
...  

Nanoscale ◽  
2016 ◽  
Vol 8 (5) ◽  
pp. 2857-2866 ◽  
Author(s):  
Matilde Saura-Múzquiz ◽  
Cecilia Granados-Miralles ◽  
Marian Stingaciu ◽  
Espen Drath Bøjesen ◽  
Qiang Li ◽  
...  

High-performance hexaferrite magnets of aligned single-domain nanoplatelets are obtained by supercritical synthesis and compaction through Spark Plasma Sintering.


Nanoscale ◽  
2021 ◽  
Author(s):  
Binguo Liu ◽  
Qi Zhang ◽  
Yuanhui Huang ◽  
Dong Liu ◽  
Wei Pan ◽  
...  

Flexible and wearable electronic technology is in great demand with the rising of smart electronic systems. Among this, exploring multifunctional with high performance at low cost has attracted extensive attention...


Author(s):  
Philip Emma ◽  
Alper Buyuktosunoglu ◽  
Michael Healy ◽  
Krishnan Kailas ◽  
Valentin Puente ◽  
...  
Keyword(s):  

2020 ◽  
Vol 19 (4) ◽  
pp. 30-42
Author(s):  
A. A. Igolkin ◽  
T. A. Chubenko ◽  
A. D. Maksimov

The problem of developing optimal-design electromagnetic valves is relevant for many industries. The development of technology is characterized by increased power and pressures used for actuator mechanisms, as well as by reducing the dimensions and mass of automatic units. The goal of this article is to develop an advanced electromagnetic valve that would ensure optimal combination of high performance, reliability, technological effectiveness and minimal cost. On the basis of standard dependences for electromagnetic phenomena a mathematic model of a SU.1 valve was developed. It was calculated in several special-purpose software packages: NISA, FEMM, ANSYS Maxwell. Parametric analysis was implemented in ANSYS Maxwell for variable working gap settings and values of current force in the solenoid. As a result, the magnetic induction distribution field was obtained. The results of modeling the operation of the electromagnetic valve and the magnetic induction distribution field are presented for variable working gap settings and different values of current force in the solenoid. The model of an advanced electromagnetic valve for a liquid rocket engine was developed on the basis of the dependences obtained. The duration of single engine firing obtained is 40 msec. The results obtained make it possible to create a valve with hold-open time of 800msec, which is considered sufficient for application in electromagnetic direct current valves.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yinghui Han ◽  
Le Li ◽  
Yunpeng Liu ◽  
Xue Li ◽  
Xiaohan Qi ◽  
...  

A simple and efficient process method for the preparation of strontium bismuth oxides (SBOs) via an impregnation-calcination method is presented. The synthesized active materials are characterized using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The electrochemical performance of the as-synthesized SBO samples is observed to decrease gradually as the strontium content is increased from 25% to 50%. The SBO sample with a Sr/Bi ratio of 1 : 3 shows the highest specific capacitance of 1228.7 F g−1 (specific capacity of 204.8 mAh g−1) at a current density of 1 A g−1 and a good cycling stability (75.1%) over 3000 charge-discharge cycles. The improved performance of the supercapacitors can be attributed to the unique structural features resulting from the addition of appropriate portions of Sr, which supports high electron conductivity and rapid ion/electron transport within the electrode and at the electrode/electrolyte interface. All the results show that the SBOs have considerable potential for use as high-performance battery-type electrodes in supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document