Advanced Silicon Interposer for High density and High Integration Electronic Packages

2015 ◽  
Vol 2015 (DPC) ◽  
pp. 000865-000905
Author(s):  
SATORU KUMOCHI ◽  
Sumio Koiwa ◽  
Kosuke Suzuki ◽  
Yoshitaka Fukuoka

As electronic product becomes smaller and lighter with an increasing number of function← the demand for high density and high integration becomes stronger. Interposers for system in package will became more and more important for advanced electronic systems. Interposers will be needed more complicated structure for 2.5D , 3D package and MEMS, OEMEMS new heterogeneous package structure Silicon interposers with through silicon vias (TSV) and back end of line (BEOL) wirring offer compelling benefits for 2.5D and 3D system integration; however, they are limited by high cost and high electrical loss. [1] This paper presents the demonstration of Silicon Interposers with fine pitch through Silicon vias(TSV),with embedded passive device. We have developed the TSV interposer with redistribution layers on both sides using MEMS technology, high aspect ratio deep etching technology and filled Cu plating with deep through holes for cost reduction and low electrical loss. The TSV interposer with 400μm thick high resistivity Si, obtained without backside processing use of carriers. Excellent through via reliability was demonstrated, due to double side thick polymer insulator that buffers the stress created by CTE mismatch between glass, copper vias and copper traces, and TSV at 200μm pitch passed 1000 thermal cycles from −55°C to 125°C. We have evaluated high frequency transmission characteristic of Si through hole by the measurement S21 parameter. Highly insulating TSV resulted in insertion loss of less than 1dB at 20GHz. Thin film SiN capacitor as embedded passive device was built in surface of TSV interposer by via first and via last method. The capacitance and leakage current of capacitor was measured and compared with two types of fabrication method.

2014 ◽  
Vol 2014 (1) ◽  
pp. 000376-000381 ◽  
Author(s):  
Satoru Kuramochi ◽  
Sumio Koiwa ◽  
Takamasa Takano ◽  
Miyuki Akazawa ◽  
Hiroshi Mawatari ◽  
...  

As electronic product becomes smaller and lighter with an increasing number of function ↚ the demand for high density and high integration becomes stronger. Interposers for system in package will became more and more important for advanced electronic systems. Silicon interposers with through silicon vias (TSV) and back end of line (BEOL) wiring offer compelling benefits for 2.5D and 3D system integration; however, they are limited by high cost and high electrical loss. On the other hand, glass has many properties that make it an ideal substrate for interposer substrates such as; ultra high resistivity, adjustable thermal expansion (CTE) and manufacturability with large panel size. Furthermore, glass via formation capabilities have dramatically improved over the past several years. Fully populated wafers with >100,000 through holes (50μm diameter) are fabricated today with 300μm thick glass. This paper presents the demonstration of TSV interposers and TGV interposers with fine pitch high aspect ratio through vias.


Author(s):  
Xi Liu ◽  
Qiao Chen ◽  
Venkatesh Sundaram ◽  
Sriram Muthukumar ◽  
Rao R. Tummala ◽  
...  

Through-silicon vias (TSVs), being one of the key enabling technologies for 3D system integration, are being used in various 3D vertically stacked devices. As TSVs are relatively new, there is not enough information in available literature on the thermo-mechanical reliability of TSVs. Due to the high coefficient of thermal expansion (CTE) mismatch between Si and the Cu vias, “Cu pumping” will occur at high temperature and “Cu sinking” will occur at low temperature, which may induce large stress in SiO2, interfacial stress at Cu/SiO2 interface and plastic deformation in Cu core. The thermal-mechanical stress can potentially cause interfacial debonding, cohesive cracking in dielectric layers or Cu core, causing some reliability issues. Thus, in this paper, three-dimensional thermo-mechanical finite-element models have been built to analyze the stress/strain distribution in the TSV structures. A comparative analysis of different via designs, such as circular, square, and annular vias has been performed. In addition, defects due to fabrication such as voids in the Cu core during electroplating and Cu pad undercutting due to over-etching are considered in the models, and it is seen that these fabrication defects are detrimental to TSV reliability.


2011 ◽  
Vol 19 (7) ◽  
pp. 5993 ◽  
Author(s):  
Yi-Sha Ku ◽  
Kuo Cheng Huang ◽  
Weite Hsu

Author(s):  
Bruce C. Kim ◽  
Sukeshwar Kannan ◽  
Anurag Gupta ◽  
Falah Mohammed ◽  
Byoungchul Ahn

The design and development of reliable 3D integrated systems require high performance interconnects, which in turn are largely dependent on the choice of filler materials used in through-silicon vias (TSVs). Copper, tungsten, and poly-silicon have been explored as filler materials; however, issues such as thermal incompatibility, electromigration, and high resistivity are still a bottleneck. In this paper, we investigate single-walled carbon nanotube (CNT) bundles as a prospective filler material for TSVs and have provided an analysis of CNT based TSVs for package and chip interconnects. The interconnects are fundamental bottlenecks to achieving high performance and reliability. We have provided electrical modeling and performed simulations on TSVs with copper and carbon nanotubes. The results from the CNT based TSVs were greatly superior to those from the conventional vias with copper.


2009 ◽  
Vol 97 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Mitsumasa Koyanagi ◽  
Takafumi Fukushima ◽  
Tetsu Tanaka

2015 ◽  
Vol 55 (9-10) ◽  
pp. 1644-1648 ◽  
Author(s):  
P.J. de Veen ◽  
C. Bos ◽  
D.R. Hoogstede ◽  
C.Th.A. Revenberg ◽  
J. Liljeholm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document