Fine Pitch Paste for System-in-Package Applications

2018 ◽  
Vol 2018 (1) ◽  
pp. 000528-000533 ◽  
Author(s):  
Zhang Ruifen ◽  
Sarangapani Murali ◽  
Vinobaji Sureshkumar ◽  
Teo Lingling ◽  
Loke Chee Keong ◽  
...  

Abstract Water soluble solder paste developed using T7 powder particles revealed good solderability when printed on copper, tin, gold flash nickel plated surfaces and on reflow as well. Its cross-section showed absence of voids, good wetting and soldering to the plated surfaces with angle of contact from 42° to 84° on reflow. All the solder interface are integral with pad/substrate surfaces and revealed formation of tin based intermetallics. T7 solder powder processed using Welco technology showed spherical, clean, smooth, un-agglomerated powder particles with the size range of 2 to 12μm. The developed solder paste is used for fine pitch applications.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3353
Author(s):  
Marina Makrygianni ◽  
Filimon Zacharatos ◽  
Kostas Andritsos ◽  
Ioannis Theodorakos ◽  
Dimitris Reppas ◽  
...  

Current challenges in printed circuit board (PCB) assembly require high-resolution deposition of ultra-fine pitch components (<0.3 mm and <60 μm respectively), high throughput and compatibility with flexible substrates, which are poorly met by the conventional deposition techniques (e.g., stencil printing). Laser-Induced Forward Transfer (LIFT) constitutes an excellent alternative for assembly of electronic components: it is fully compatible with lead-free soldering materials and offers high-resolution printing of solder paste bumps (<60 μm) and throughput (up to 10,000 pads/s). In this work, the laser-process conditions which allow control over the transfer of solder paste bumps and arrays, with form factors in line with the features of fine pitch PCBs, are investigated. The study of solder paste as a function of donor/receiver gap confirmed that controllable printing of bumps containing many microparticles is feasible for a gap < 100 μm from a donor layer thickness set at 100 and 150 μm. The transfer of solder bumps with resolution < 100 μm and solder micropatterns on different substrates, including PCB and silver pads, have been achieved. Finally, the successful operation of a LED interconnected to a pin connector bonded to a laser-printed solder micro-pattern was demonstrated.


1999 ◽  
Author(s):  
Jianbiao Pan ◽  
Gregory L. Tonkay

Abstract Stencil printing has been the dominant method of solder deposition in surface mount assembly. With the development of advanced packaging technologies such as ball grid array (BGA) and flip chip on board (FCOB), stencil printing will continue to play an important role. However, the stencil printing process is not completely understood because 52–71 percent of fine and ultra-fine pitch surface mount assembly defects are printing process related (Clouthier, 1999). This paper proposes an analytical model of the solder paste deposition process during stencil printing. The model derives the relationship between the transfer ratio and the area ratio. The area ratio is recommended as a main indicator for determining the maximum stencil thickness. This model explains two experimental phenomena. One is that increasing stencil thickness does not necessarily lead to thicker deposits. The other is that perpendicular apertures print thicker than parallel apertures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hitesh Kumar Dewangan

: Poor solubility of some medicinal compounds is a serious challenge that can be addressed by using a nano-suspension for improved delivery. The nanoparticles enhance the bioavailability along with the aqueous solubility of the drug, which is accomplished by increasing the active surface area of the drug. The gained attention of the nanosuspension is due to its stabilization facility, which is achieved by polymers, such as polyethylene glycol (PEG), having a particular size range of 10 - 100 nm. Hence, these nanoparticles have the capacity of binding to the targeted with very low damage to the healthy tissues. These are prepared by various methods, such as milling, high-pressure homogenization, and emulsification, along with melt emulsification. Moreover, surface modification and solidification have been used to add specific properties to the advanced therapies as post-processing techniques. For many decades, it has been known that water solubility hampers the bioavailability and not all drugs are water-soluble. In order to combat this obstacle, nanotechnology has been found to be of specific interest. For elevating the bioavailability by increasing the dissolution rate, the methodology of reduction of the associated drug particles into their subsequent submicron range is incorporated. For oral and non-oral administration, these nanosuspension formulations are used for the delivery of drugs.


2007 ◽  
Vol 11 (06) ◽  
pp. 406-417 ◽  
Author(s):  
Yusuke Inaba ◽  
Kazuya Ogawa ◽  
Yoshiaki Kobuke

Acetylene-bridged bisporphyrins and trisporphyrins having branched bulky bis(carboxylethyl)methyl meso-substituents were synthesized. These compounds showed large effective two-photon absorption cross-section values at 890 nm measured by using a nanosecond Z-scan method. Sodium salt of hydrolyzed trisporphyrins showed broad and red-shifted Q-bands over 900 nm. Two-photon absorption cross-section values of water-soluble dimers in water were similar to, or slightly larger than, those of ester forms evaluated in toluene. Furthermore, the generation of singlet oxygen upon one-photon irradiation for dimers in water was confirmed.


2019 ◽  
Vol 16 (2) ◽  
pp. 91-102
Author(s):  
Lars Bruno ◽  
Benny Gustafson

Abstract Both the number and the variants of ball grid array packages (BGAs) are tending to increase on network printed board assemblies with sizes ranging from a few millimeter die size wafer level packages with low ball count to large multidie system-in-package (SiP) BGAs with 60–70 mm side lengths and thousands of I/Os. One big challenge, especially for large BGAs, SiPs, and for thin fine-pitch BGA assemblies, is the dynamic warpage during the reflow soldering process. This warpage could lead to solder balls losing contact with the solder paste and its flux during parts of the soldering process, and this may result in solder joints with irregular shapes, indicating poor or no coalescence between the added solder and the BGA balls. This defect is called head-on-pillow (HoP) and is a failure type that is difficult to determine. In this study, x-ray inspection was used as a first step to find deliberately induced HoP defects, followed by prying off of the BGAs to verify real HoP defects and the fault detection correlation between the two methods. The result clearly shows that many of the solder joints classified as potential HoP defects in the x-ray analysis have no evidence at all of HoP after pry-off. This illustrates the difficulty of determining where to draw the line between pass and fail for HoP defects when using x-ray inspection.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 000862-000889
Author(s):  
Hironori Uno ◽  
Masayuki Ishikawa ◽  
Akihiro Masuda ◽  
Hiroki Muraoka ◽  
Kanji Kuba

The work to be detailed in this paper is our development of 96.5mass%Sn-3.0mass%Ag-0.5mass%Cu fine solder particles with an average particle size of under 3um (D50), using a chemical reduction method. An evaluation was conducted on the properties of the particles. The average size of particles appeared to be under 3um with a higher yield compared to particles using the conventional gas atomization method. The melting temperature of fine solder particles using this method was its eutectic temperature, which is same as using the gas–atomized particles. 120um pitch solder bumps from the solder paste using the above mentioned fine solder particles were created on the substrate. As a result of property evaluation, it was turned out that the solder paste created a superior printing shape and coplanarity compared to the conventional paste with gas-atomized particles. In order to investigate the superior printing property generated by the paste with fine solder particles, the rheology of the paste was evaluated.It was verified that the anisotropic shape of particles has contributed to prevent the printed paste from slumping, which has resulted in the improvement of printed shape. It also shows that the filling characteristic of the paste was improved by the smaller particles and the better coplanarity was observed. The importance of finer solder particles for finer pitch assembly will be presented.


Author(s):  
Phani Vallabhajosyula

Mixed technology applications for Flip-Chip (FC) / SMT require special step stencil designs where flux is printed first for the FC and SMD paste printed next with a second stencil that has a relief pocket etched or formed in the FC area. Step stencils are used when varying stencil thicknesses are required to print into cavities or on elevated surfaces or to provide relief for certain features on a board. In the early days of SMT assembly, Step Stencils were used to reduce the stencil thickness for 25 mil pitch leaded device apertures. Thick metal stencils that have both relief-etch pockets and reservoir step pockets are very useful for paste reservoir printing. However as SMT requirements became more complex and consequently more demanding so did the requirements for complex Step Stencils. Electroform Step-Up Stencils for ceramic BGA's and RF Shields are a good solution to achieve additional solder paste height on the pads of these components as well as providing exceptional paste transfer for smaller components like uBGAs and 0201s. As the components are getting smaller, for example 0201m, or as the available real estate for component placement on a board is getting smaller – finer is the aperture size and pitch on the stencils. Aggressive distances from step wall to aperture are also required. Ultra-thin stencils with thicknesses in the order of 40um with steps of 13um are used to obtain desired print volume. These applications and the associated stencil design to achieve a solution will be discussed in detail in this paper. Various print experiments will be conducted and print quality will be determined by visual inspection and 3D measurement of the paste deposit to understand the volume transfer efficiency.


Materials ◽  
2014 ◽  
Vol 7 (12) ◽  
pp. 7706-7721 ◽  
Author(s):  
Mohd Rahman ◽  
Noor Zubir ◽  
Raden Leuveano ◽  
Jaharah Ghani ◽  
Wan Mahmood

Sign in / Sign up

Export Citation Format

Share Document