Continuous Manufacture of Submicron Thick Ceramic Green Tapes and Coatings Demonstrated for TCO Nano Particles

2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000078-000083
Author(s):  
Nadja Straue ◽  
Andreas Roosen

This presentation introduces a new technique to manufacture continuously submicron thick ceramic green tapes and coatings from nano particulate suspensions. A profiled steel rod is used to coat large areas with a very low film thickness of down to 250 nm. This technique can easily be scaled up and is therefore suitable for mass production at high throughput and low cost. The profile rod technique could be a method to overcome the limit of the tape casting process and therefore this technique exhibits an enormous economical potential. The technique is demonstrated at the example of nano particulate indium tin oxide (ITO) and zinc oxide (ZnO) particles, which are both transparent conductive oxides (TCOs) and therefore interesting materials for printed displays etc. Nano particles from Evonik Degussa GmbH were first dispersed and stabilized in organic solvents. Subsequently, dispersions as well as slurries were prepared. Their rheological and wetting behavior were studied and the effect on the microstructure of the resulting layer was evaluated. Furthermore, the influence of the processing parameters during coating on the layer quality was analyzed. Finally, the functionality of the printed layers was proven by electrical measurements as well as the assembly of electron devices.

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 140
Author(s):  
Lichen Liu ◽  
Ziping Cao ◽  
Min Chen ◽  
Jun Jiang

This paper reports the fabrication and characterization of (Bi0.48Sb1.52)Te3 thick films using a tape casting process on glass substrates. A slurry of thermoelectric (Bi0.48Sb1.52)Te3 was developed and cured thick films were annealed in a vacuum chamber at 500–600 °C. The microstructure of these films was analyzed, and the Seebeck coefficient and electric conductivity were tested. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of these samples. Conductive films were obtained after annealing and led to acceptable thermoelectric performance. While the properties of these initial materials are not at the level of bulk materials, this work demonstrates that the low-cost tape casting technology is promising for fabricating thermoelectric modules for energy conversion.


2016 ◽  
Vol 881 ◽  
pp. 277-282
Author(s):  
Natália Maria de Faria ◽  
Rosa Maria Rocha ◽  
Cristina Moniz Araujo Lopes

Alumina has been applied in systems of protection against high speed impact due mostly to the mechanical properties, low cost and ease of processing. A new approach to this application involves the manufacture of lamellar bioinspired composites of thin plates of alumina obtained by tape casting process, and fabrics of poly (p-aramid), Kevlar ®. The aim of this study is to investigate the interaction between the ceramic and polymeric fibers fabric observing the influence of different nature adhesives to select the most suitable for further preparation of bioinspired lamellar composite for impact protection applications. The strength of adhesion is evaluated by 90° Degree Peel Test and the interaction is investigated using techniques of optical microscopy, scanning electron microscopy (SEM) and spectroscopy with Fourier transform infrared (FT-IR) to characterize the surfaces of substrates after testing. Polyurethane aqueous based adhesive presented better interaction with both materials when compared to organic solvent based adhesive.


2014 ◽  
Vol 775-776 ◽  
pp. 562-565
Author(s):  
Tatiane Mattos Amadio ◽  
João B. Rodrigues Neto ◽  
Dachamir Hotza

This work aimed to develop an alumina composite reinforced with polycrystalline alumina fibers to increase the mechanical properties of the product. A water-based processing was carried out, replacing the use of toxic and flammable organic solvents. The forming technique used was tape casting, which in addition to reliability and low cost, enables to make thin, flat tapes. The parameters for the tape casting process were: gap between the blades of 350 μm and casting speed of 12 cm/min. The process was optimized through a rheological study and alumina suspension with 50 wt.% solids was used. The slurry showed a pseudoplastic behavior and a high value of thixotropy. Several methods for separation and processing of the fibers were tested and a scattering using a specially designed support was the most efficient option. The tapes were thermopressed at 65°C and 30 MPa. The tensile test of green tapes showed a significant increase of the mechanical resistance for fiber-reinforced tapes, which was also dependent on fiber orientation.


2011 ◽  
Vol 418-420 ◽  
pp. 818-821
Author(s):  
Zhao Ming Liu ◽  
Gao Feng Quan ◽  
Ying Bo Zhang

A new technique has been developed by infiltration during casting process to AZ91D magnesium alloy part. Through a melting process a alloyed surface layer was formed on the surface of the part in casting process, and the surface layer helps improve the corrosion resistance. The macro morphology, thickness, microstructure and properties of the layer were analyzed by digital, scanning electron microscopy, spectroscopy and corrosion measurement system. The results show that a uniform and dense infiltration layer on the surface of AZ91D part was obtained. This technique can fundamentally change the physical and chemical properties of magnesium alloy parts. More importantly, it is low-cost, green and environmental protection.


Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 339
Author(s):  
Kwati Leonard ◽  
Wendelin Deibert ◽  
Mariya E. Ivanova ◽  
Wilhelm A. Meulenberg ◽  
Tatsumi Ishihara ◽  
...  

Steam electrolysis constitutes a prospective technology for industrial-scale hydrogen production. The use of ceramic proton-conducting electrolytes is a beneficial option for lowering the operating temperature. However, a significant challenge with this type of electrolyte has been upscaling robust planar type devices. The fabrication of such multi-layered devices, usually via a tape casting process, requires careful control of individual layers’ shrinkages to prevent warping and cracks during sintering. The present work highlights the successful processing of 50 × 50 mm2 planar electrode-supported barium cerium yttrium zirconate BaZr0.44Ce0.36Y0.2O2.9 (BZCY(54)8/92) half cells via a sequential tape casting approach. The sintering parameters of the half-cells were analyzed and adjusted to obtain defect-free half-cells with diminished warping. Suitably dense and gas-tight electrolyte layers are obtained after co-sintering at 1350 °C for 5 h. We then assembled an electrolysis cell using Ba0.5La0.5CoO3−δ as the steam electrode, screen printed on the electrolyte layer, and fired at 800 °C. A typical Ba0.5La0.5CoO3−δ|BaZr0.44Ce0.36Y0.2O3−δ(15 μm)|NiO-SrZr0.5Ce0.4Y0.1O3−δ cell at 600 °C with 80% steam in the anode compartment reached reproducible terminal voltages of 1.4 V @ 500 mA·cm−2, achieving ~84% Faradaic efficiency. Besides electrochemical characterization, the morphology and microstructure of the layered half-cells were analyzed by a combination of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy. Our results also provide a feasible approach for realizing the low-cost fabrication of large-sized protonic ceramic conducting electrolysis cells (PCECs).


2003 ◽  
Vol 783 ◽  
Author(s):  
Charles E Free

This paper discusses the techniques that are available for characterising circuit materials at microwave and millimetre wave frequencies. In particular, the paper focuses on a new technique for measuring the loss tangent of substrates at mm-wave frequencies using a circular resonant cavity. The benefits of the new technique are that it is simple, low cost, capable of good accuracy and has the potential to work at high mm-wave frequencies.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1489
Author(s):  
Bhaskar Parida ◽  
Saemon Yoon ◽  
Dong-Won Kang

Materials and processing of transparent electrodes (TEs) are key factors to creating high-performance translucent perovskite solar cells. To date, sputtered indium tin oxide (ITO) has been a general option for a rear TE of translucent solar cells. However, it requires a rather high cost due to vacuum process and also typically causes plasma damage to the underlying layer. Therefore, we introduced TE based on ITO nanoparticles (ITO-NPs) by solution processing in ambient air without any heat treatment. As it reveals insufficient conductivity, Ag nanowires (Ag-NWs) are additionally coated. The ITO-NPs/Ag-NW (0D/1D) bilayer TE exhibits a better figure of merit than sputtered ITO. After constructing CsPbBr3 perovskite solar cells, the device with 0D/1D TE offers similar average visible transmission with the cells with sputtered ITO. More interestingly, the power conversion efficiency of 0D/1D TE device was 5.64%, which outperforms the cell (4.14%) made with sputtered-ITO. These impressive findings could open up a new pathway for the development of low-cost, translucent solar cells with quick processing under ambient air at room temperature.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 607
Author(s):  
Lucero M. Hernandez-Cedillo ◽  
Francisco G. Vázquez-Cuevas ◽  
Rafael Quintero-Torres ◽  
Jose L. Aragón ◽  
Miguel Angel Ocampo Mortera ◽  
...  

In this article, we show an alternative low-cost fabrication method to obtain poly(dimethyl siloxane) (PDMS) microfluidic devices. The proposed method allows the inscription of micron resolution channels on polystyrene (PS) surfaces, used as a mold for the wanted microchip’s production, by applying a high absorption coating film on the PS surface to ablate it with a focused low-power visible laser. The method allows for obtaining micro-resolution channels at powers between 2 and 10 mW and can realize any two-dimensional polymeric devices. The effect of the main processing parameters on the channel’s geometry is presented.


2019 ◽  
Vol 3 (2) ◽  
pp. 35 ◽  
Author(s):  
Miguel Reis Silva ◽  
António M. Pereira ◽  
Nuno Alves ◽  
Gonçalo Mateus ◽  
Artur Mateus ◽  
...  

This work presents an innovative system that allows the oriented deposition of continuous fibers or long fibers, pre-impregnated or not, in a thermoplastic matrix. This system is used in an integrated way with the filamentary fusion additive manufacturing technology and allows a localized and oriented reinforcement of polymer components for advanced engineering applications at a low cost. To demonstrate the capabilities of the developed system, composite components of thermoplastic matrix (polyamide) reinforced with pre-impregnated long carbon fiber (carbon + polyamide), 1 K and 3 K, were processed and their tensile and flexural strength evaluated. It was demonstrated that the tensile strength value depends on the density of carbon fibers present in the composite, and that with the passage of 2 to 4 layers of fibers, an increase in breaking strength was obtained of about 366% and 325% for the 3 K and 1 K yarns, respectively. The increase of the fiber yarn diameter leads to higher values of tensile strength of the composite. The obtained standard deviation reveals that the deposition process gives rise to components with anisotropic mechanical properties and the need to optimize the processing parameters, especially those that lead to an increase in adhesion between deposited layers.


Sign in / Sign up

Export Citation Format

Share Document