Large-area Nanosilver Die-attach by Hot-pressing Below 200°C and 5 MPa

2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000129-000134 ◽  
Author(s):  
Kewei Xiao ◽  
Jesus N. Calata ◽  
Hanguang Zheng ◽  
Khai D.T. Ngo ◽  
Guo-Quan Lu

Sintered nanoscale silver joint is an emerging lead-free die-attach solution for high-temperature packaging because of silver's high melting temperature. For bonding small chips, the nanosilver solution can be achieved with a simple heating profile under atmospheric pressure. However, for bonding large-area chips, e.g. > 1 cm2 IGBT chips, uniaxial pressure of a few MPa has been found necessary during the sintering stage of the bonding process, which is carried out at temperatures below 275°C. Hot-pressing at high temperatures can cause significant wear and tear on the processing equipment, resulting in high maintenance cost. In this study, we ran a series of experiments aimed at lowering the hot-pressing temperature. Specifically, we examined a process involving hot-press drying, followed by sintering without any applied pressure. A fractional factorial design of experiments was used to identify the importance and interaction of various processing parameters, such as hot-pressing pressure/temperature/time and sintering temperature/time, on the final bond quality of sintered nanosilver joints. Based on the results, a simpler process, consisting of hot-press drying at 180°C under 3 MPa, followed by sintering at 275°C under atmospheric pressure was found to produce attachments with die-shear strength in excess of 30 MPa.

2007 ◽  
Vol 336-338 ◽  
pp. 1236-1238
Author(s):  
Chang Ming Xu ◽  
Shi Wei Wang ◽  
Xiao Xian Huang ◽  
Jing Kun Guo

The influence of pressure on the crystallization behavior in SiO2f/SiO2 composites hotpressed at 1350°C was studied. The crystalline phase composition analysis on SiO2f/SiO2 composites revealed that the formation of cristobalite was promoted when the hot-pressing pressure ≤ 12 MPa, however suppressed with higher pressure applied. It can be ascribed to the nucleation mechanism change from surface nucleation to bulk nucleation. Analysis on relative density as well as fracture microstructure of SiO2f/SiO2 composites confirmed the conclusion.


2014 ◽  
Vol 314 ◽  
pp. 1074-1081 ◽  
Author(s):  
Jia-Yang Juang ◽  
Tung-Sheng Chou ◽  
Hsin-Tien Lin ◽  
Yuan-Fang Chou ◽  
Chih-Chiang Weng

2021 ◽  
Vol 11 (20) ◽  
pp. 9571
Author(s):  
Ga Eul Kim ◽  
Hyuntae Kim ◽  
Kyoohee Woo ◽  
Yousung Kang ◽  
Seung-Hyun Lee ◽  
...  

We aimed to increase the processing area of the roll-to-roll (R2R) nanoimprint lithography (NIL) process for high productivity, using a long roller. It is common for a long roller to have bending deformation, geometric errors and misalignment. This causes the non-uniformity of contact pressure between the rollers, which leads to defects such as non-uniform patterning. The non-uniformity of the contact pressure of the conventional R2R NIL system was investigated through finite element (FE) analysis and experiments in the conventional system. To solve the problem, a new large-area R2R NIL uniform pressing system with five multi-backup rollers was proposed and manufactured instead of the conventional system. As a preliminary experiment, the possibility of uniform contact pressure was confirmed by using only the pressure at both ends and one backup roller in the center. A more even contact pressure was achieved by using all five backup rollers and applying an appropriate pushing force to each backup roller. Machine learning techniques were applied to find the optimal combination of the pushing forces. In the conventional pressing process, it was confirmed that pressure deviation of the contact area occurred at a level of 44%; when the improved system was applied, pressure deviation dropped to 5%.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anna Prnová ◽  
Jana Valúchová ◽  
Monika Michálková ◽  
Beáta Pecušová ◽  
Milan Parchovianský ◽  
...  

Abstract Glass microspheres with yttria-alumina eutectic composition (76.8 mol % Al2O3 and 23.2 mol % Y2O3) were prepared by sol-gel Pechini method and flame synthesis with or without subsequent milling. Prepared amorphous powders were studied by X-ray powder diffraction (XRD), particle size analysis (PSA), scanning electron microscopy (SEM) and differential thermal analysis (DTA). Hot pressing (HP), rapid hot pressing (RHP) and spark plasma sintering (SPS) were used to sinter amorphous precursor powders at 1600 °C without holding time (0 min). The preparation process including milling step resulted in amorphous powders with narrower particle size distribution and smaller particle size. All applied pressure assisted sintering techniques resulted in dense bulk samples with fine grained microstructure consisting of irregular α-Al2O3 and Y3Al5O12 (YAG) grains. Milling was beneficial in terms of final microstructure refinement and mechanical properties of sintered materials. A material with the Vickers hardness of HV = (17.1 ± 0.3) GPa and indentation fracture resistance of (4.2 ± 0.2) MPa.m1/2 was prepared from the powder milled for 12 h.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1166 ◽  
Author(s):  
Pavlo Bekhta ◽  
Ján Sedliačik

Thermoplastic films exhibit good potential to be used as adhesives for the production of veneer-based composites. This work presents the first effort to develop and evaluate composites based on alder veneers and high-density polyethylene (HDPE) film. The effects of hot-pressing temperature (140, 160, and 180 °C), hot-pressing pressure (0.8, 1.2, and 1.6 MPa), hot-pressing time (1, 2, 3, and 5 min), and type of adhesives on the physical and mechanical properties of alder plywood panels were investigated. The effects of these variables on the core-layer temperature during the hot pressing of multiplywood panels using various adhesives were also studied. Three types of adhesives were used: urea–formaldehyde (UF), phenol–formaldehyde (PF), and HDPE film. UF and PF adhesives were used for the comparison. The findings of this work indicate that formaldehyde-free HDPE film adhesive gave values of mechanical properties of alder plywood panels that are comparable to those obtained with traditional UF and PF adhesives, even though the adhesive dosage and pressing pressure were lower than when UF and PF adhesives were used. The obtained bonding strength values of HDPE-bonded alder plywood panels ranged from 0.74 to 2.38 MPa and met the European Standard EN 314-2 for Class 1 plywood. The optimum conditions for the bonding of HDPE plywood were 160 °C, 0.8 MPa, and 3 min.


2019 ◽  
Vol 201 (1) ◽  
pp. 218-223
Author(s):  
M. A. Ramazanov ◽  
H. A. Shirinova ◽  
F. V. Hajiyeva ◽  
A. Kh. Karimova

In the present study, the influence of the temperature–time mode of crystallization (TTC) on the electrophysical properties of polymer-based PP + Fe3O4 nanocomposite materials was investigated. Also, the effect of the temperature-time mode of crystallization of nanocomposites on the negative magnetoresistance (NMR) effect that observed in this material was investigated. It was found that dielectric permittivity of polymer nanocomposites rises with increasing of cooling rate. The cooling rate of nanocomposites after hot-pressing also affects the NMR effect of these materials. The conductivity of the material under the influence of magnetic field improves with increasing of its cooling rate, which leads to increasing of NMR effect.


1990 ◽  
Vol 5 (1) ◽  
pp. 83-91 ◽  
Author(s):  
A. S. Kao ◽  
H. A. Kuhn ◽  
O. Richmond ◽  
W. A. Spitzig

Void formation in tensile test under hydrostatic pressure is characterized through quantitative metallography, and the fracture mechanism under pressure is analyzed by fractography. Transition of the fracture surface from the cup-and-cone under atmospheric pressure to a slant structure under high pressure is explained on the basis of the void development leading to fracture and the concomitant change in fracture mechanism. The concept of “shear blocks” is introduced to illustrate the features observed on the fracture surface of specimens tested under high pressure. It is postulated that shear blocks evolve to connect the central crack regions with the shear crack initiated on neck surface due to the severe necking deformation under applied pressure.


Sign in / Sign up

Export Citation Format

Share Document