Thin Wafer Handling of 300mm Wafer for 3D IC Integration

2011 ◽  
Vol 2011 (1) ◽  
pp. 000202-000207 ◽  
Author(s):  
H. H. Chang ◽  
J. H. Lau ◽  
W. L. Tsai ◽  
C. H. Chien ◽  
P. J. Tzeng ◽  
...  

In this study, thin wafer handling of 300mm wafer for 3D IC Integration is investigated. Emphasis is placed on the determination of the effect of a dicing tape on thin-wafer handling of wafers with Cu-Au pads, Cu-Ni-Au UBM, and TSV interposer with RDL. Also, thin-wafer handling critical issues such as the chip/interposer wafer, carrier wafer, temporary bonding, thinning, backside process, de-bonding, and assembly are presented and their potential solutions are discussed. Finally, state-of-the-art of materials and equipments for thin-wafer handling are examined.

2013 ◽  
Vol 2013 (1) ◽  
pp. 000389-000396
Author(s):  
J. H. Lau ◽  
H. C. Chien ◽  
S. T. Wu ◽  
Y. L. Chao ◽  
W. C. Lo ◽  
...  

Thin-wafer handling is one of the key enabling technologies for 2.5D/3D IC integration. Usually, it temporary bonds the TSV (through-silicon via)/RDL (redistribution layer) wafer (e.g., passive and active interposers) to a supporting carrier wafer with an adhesive, backgrinds the TSV/RDL interposer wafer to very thin (≤100μm), goes through all the necessary processes, and then de-bonds the thin TSV/RDL interposer wafer from the carrier wafer. In this study, a different route will be taken which eliminates the temporary bonding and de-bonding processes. Emphasis is placed on using a heat-spreader wafer as a supporting carrier wafer during the manufacturing processes and after the assembly is completed (diced), the heat-spreader remains on the thin TSV/RDL interposer. This is a very simple and low-cost thin-wafer handling method for 2.5D/3D IC integration.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 560
Author(s):  
Alexandra Carvalho ◽  
Mariana C. F. Costa ◽  
Valeria S. Marangoni ◽  
Pei Rou Ng ◽  
Thi Le Hang Nguyen ◽  
...  

We show that the degree of oxidation of graphene oxide (GO) can be obtained by using a combination of state-of-the-art ab initio computational modeling and X-ray photoemission spectroscopy (XPS). We show that the shift of the XPS C1s peak relative to pristine graphene, ΔEC1s, can be described with high accuracy by ΔEC1s=A(cO−cl)2+E0, where c0 is the oxygen concentration, A=52.3 eV, cl=0.122, and E0=1.22 eV. Our results demonstrate a precise determination of the oxygen content of GO samples.


2021 ◽  
Vol 22 (12) ◽  
pp. 6283
Author(s):  
Jérémy Lamarche ◽  
Luisa Ronga ◽  
Joanna Szpunar ◽  
Ryszard Lobinski

Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.


2021 ◽  
Vol 2021 (1) ◽  
pp. 37-50
Author(s):  
A.A. Fokov ◽  
◽  
O.P. Savchuk ◽  

The realization of existing projects of on-orbit servicing and the development of new ones is a steady trend in the development of space technology. In many cases, on-orbit service clients are objects that exhibit an undesired rotary motion, which renders their servicing difficult or impossible. The problem of on-orbit service object motion control determines the topicality of studies aimed not only at the refinement of methods and algorithms of controlling both the translational and the rotary motion of an object, but also at the development and refinement of methods of onboard determination of the object – service spacecraft relative motion parameters. This paper overviews the state of the art of the problem of object motion parameter determination in on-orbit servicing tasks and existing methods of object motion control and angular motion damping and specifies lines of further investigations into the angular motion control of non-cooperative service objects. Based on the analysis of publications on the subject, the applicability of onboard means for object motion parameter determination is characterized. The analysis of the applicability of methods of remote determination of the parameters of an unknown non-cooperative object from a service spacecraft shows that they are at the research stage. The input data for the verification of methods proposed in the literature were simulated or taken from ground experiments or previous missions. Contact and contactless methods of angular motion control of non-cooperative on-orbit service objects are considered. From the state of the art of investigations into the contactless motion control of on-orbit service objects it may be concluded that the most advanced contactless method of motion control of an on-orbit service object is a technology based on the use of an ion beam directed to the object from an electrojet engine onboard a service spacecraft. Lines of further investigations into non-cooperative object motion control are proposed.


2020 ◽  
Vol 2020 (1) ◽  
pp. 000302-000306
Author(s):  
Yuta Akasu ◽  
Emi Miyazawa ◽  
Tetsuya Enomoto ◽  
Yasuyuki Oyama ◽  
Shogo Sobue ◽  
...  

Abstract We have developed a new temporary bonding film (TBF) and new debonding system with Xe flash light irradiation, named photonic release system, for advanced package assembly process. Since new TBF has a high Tg over 200 °C after curing and shows good chemical resistance to developer, resist stripper, and plating chemicals, no delamination, voiding, and swelling were observed after thermal and chemical treatment in the bonded structure of wafer and glass carrier. In addition, by adopting a metal-sputtered glass carrier, wafer could be debonded by Xe flash light irradiation in less than 1 ms through the glass carrier with no damage. Residual TBF on the wafer surface could be peeled off smoothly at ambient temperature without residue on the wafer. In this research, we also demonstrated the good applicability of this temporary bonding film to the typical packaging process by using test vehicle including 12 inch mold wafer and the advantage of photonic release system.


1996 ◽  
Vol 33 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Henrik A. Thomsen ◽  
Kenneth Kisbye

State-of-the-art on-line meters for determination of ammonium, nitrate and phosphate are presented. The on-line meters employ different measuring principles and are available in many different designs differing with respect to size, calibration and cleaning principle, user-friendliness, response time, reagent and sample consumption. A study of Danish experiences on several plants has been conducted. The list price of an on-line meter is between USD 8000 and USD 35,000. To this should be added the cost of sample preparation, design, installation and running-in. The yearly operating for one meter are in the range of USD 200-2500 and the manpower consumption is in the range of 1-5 hours/month. The accuracy obtained is only slightly smaller than the accuracy on collaborative laboratory analyses, which is sufficient for most control purposes.


Detritus ◽  
2020 ◽  
pp. 62-66
Author(s):  
Xiaozheng Chen ◽  
Nils Kroell ◽  
Alexander Feil ◽  
Thomas Pretz

In food and medical packaging, multiple layers of different polymers are combined in order to achieve optimal functional properties for various applications. Flexible multilayer plastic packaging achieves a reduction in weight compared to other packaging products with the same function, saving material and in transportation costs. Recycling of post-industrial multilayer packaging was achieved by some companies, but the available technologies are limited to specific polymer types. For post-consumer waste, recycling of multilayer packaging has not been achieved yet. One of the main challenges in plastic sorting is that the detection and separation of multilayer packaging from other materials is not possible yet. In this study, the possibility to detect and sort flexible multilayer plastic packaging was investigated with near-infrared spectroscopy, which is the state-of-the-art technology for plastic sorting. The results show that from a detection and classification point of view, sorting of monolayer, two- and three-layers samples under laboratory conditions is possible. According to the captured data, the sequence of layers has little influence on the spectra. In case of glossy samples, the spectra are influenced by printed surfaces. With an increase in thickness, the spectra get more characteristic, which makes the classification easier. Our results indicate that the sorting of post-consumer multilayer plastic packaging by main composition is theoretically achievable.


2019 ◽  
Vol 3 (1) ◽  

As it is known: in the state of the art, the like and the unlike polarity between two magnets remains independent of the distance between them. According to the invention: “Magnetic System of Three Interactions”, International office of patents WIPO-PCT, bearing the No WO/2013/136097of the inventor Georgios K. Kertsopoulos, the like and the unlike polarity between two magnetic constructions depends on the distance between them [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. The know-how of the invention makes it possible for interacting magnetic constructions to possess and perform interchangeable more than 96 polarities and interactions. Polarities and magnetic fields can in multiple ways interchange, depending on the varying distance between two interacting confronted magnetic constructions, offering many new variable design capabilities. For the first time, new types of poles are created, for example: simultaneous like-unlike poles or simultaneous unlike-like poles are created, causing stable or unstable balance as an interaction; also, for the first time in magnetism, new types of magnetic fields are formed never before observed, for example: remote fields of very strong attraction, without however, the contact of the magnetic constructions. The magnetic devices that perform these multiple interactions are fully patented internationally, published in a book in English, by the inventor a book in English, by the inventor [11]. The new scientific laws and principles, revealed through these experiments enrich the very basics, the foundation of magnetism, since many new types of polarities and interactions are introduced and are made possible for the first time in science and technology. In figure 1 of the article we observe the division and determination of the empty air space, between the magnetic constructions, at three distances and two boundaries which apply both for the like and the unlike front poles and in figure 2 we observe the three typical spatial distances, the three multi-plane polarities and the three interactions with properties and with spatial boundaries and interactions based on the bundles of the dynamic lines between the two magnetic constructions, on the guide, when the poles of the front poles of the arrangements are initially like. Furthermore, in figure 7 we observe a schematic representation of the three different fields (175), (177) and (178) between the above-mentioned magnetic arrangements of the constructions of the invention, with initially like front poles, in the sense of the general cause of the dynamic difference. This article is in continuation of the following published article that introduces the reader to the invention’s technology: Georgios K. Kertsopoulos (2018) Innovation article: 36 over passed restrictions of magnetism achieved by the 96 multiple magnetic polarities-interactions performed by the Kertsopoulos world patented invention vs. the known two. Advances in Nanoscience and nanotechnology [12]. https://www.opastonline.com/wp-content/uploads/2018/12/36-over-passed-restrictions-of-magnetism-achieved-by-the-96- multiple-magnetic-polarities-interactions-performed-by-the-kertsopoulos-world-ann-18.pdf?fbclid=IwAR1jYPFME5mhX2FLbKKTPAdu0YMe3FqHtoUdoRoeao8mKIp1GRuWeovEaA


Sign in / Sign up

Export Citation Format

Share Document