Biocompatible encapsulation and interconnection technology for implantable electronic devices

2012 ◽  
Vol 2012 (1) ◽  
pp. 000215-000224
Author(s):  
Maaike Op de Beeck ◽  
John O'Callaghan ◽  
Karen Qian ◽  
Bishoy M. Morcos ◽  
Aleksandar Radisic ◽  
...  

A biocompatible packaging process for implantable electronic systems is under development at imec, combining biocompatibility, hermeticity, extreme miniaturization and cost aspects. In a first phase of this packaging sequence, hermetic chip sealing is performed by encapsulating all chips to realize a bi-directional diffusion barrier preventing body fluids to leach into the package causing corrosion, and preventing IC materials such as Cu to diffuse into the body, causing various adverse effects. For cost effectiveness, this chip sealing is performed as post-processing at wafer level, using modifications of standard clean room (CR) fabrication techniques. Well known conductive and insulating CR materials are investigated with respect to their biocompatibility, biostability, diffusion barrier properties and sensitivity to corrosion. Material selection and integration aspects are modified until good properties are obtained. In a second phase of the packaging process, all chips of the final device should be electrically connected, applying a biocompatible metallization scheme. We selected the use of Pt due to its excellent biocompatibility and corrosion resistance. Since Pt is very expensive, a cost effective Pt-selective plating process is developed. During the third packaging step, all system components such as electronics, passives, a battery,… will be interconnected. To provide sufficient mechanical support, all components are finally embedded using a medical grade elastomer such as PDMS or Poly-urethane.

2011 ◽  
Vol 2011 (1) ◽  
pp. 000152-000160 ◽  
Author(s):  
Maaike Op de Beeck ◽  
Karen Qian ◽  
Paolo Fiorini ◽  
Karl Malachowski ◽  
Chris Van Hoof

A biocompatible packaging process for implantable electronic systems is described, combining biocompatibility and hermeticity with extreme miniaturization. In a first phase of the total packaging sequence, all chips are encapsulated in order to realize a bi-directional diffusion barrier preventing body fluids to leach into the package causing corrosion, and preventing IC materials such as Cu to diffuse into the body, causing various adverse effects. For cost effectiveness, this hermetic chip sealing is performed as post-processing at wafer level, using modifications of standard clean room (CR) fabrication techniques. Well known conductive and insulating CR materials are investigated with respect to their biocompatibility, diffusion barrier properties and sensitivity to corrosion. In a second phase of the packaging process, all chips of the final device should be electrically connected, applying a biocompatible metallization scheme using eg. gold or platinum. For electrodes being in direct contact with the tissue after implantation, IrOx metallization is proposed. Device assembly is the final packaging step, during which all system components such as electronics, passives, a battery,… will be interconnected. To provide sufficient mechanical support, all these components are embedded using a biocompatible elastomer such as PDMS.


2012 ◽  
Vol 9 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Maaike Op de Beeck ◽  
Karen Qian ◽  
Paolo Fiorini ◽  
Karl Malachowski ◽  
Chris Van Hoof

A biocompatible packaging process for implantable electronic systems is described, combining biocompatibility and hermeticity with extreme miniaturization. In Phase 1 of the total packaging sequence, all chips are encapsulated in order to realize a bidirectional diffusion barrier, preventing body fluids from leaching into the package, which would cause corrosion, and preventing IC materials such as Cu from diffusing into the body, which would cause various adverse effects. For cost-effectiveness, this hermetic chip sealing is performed as a postprocessing step at the wafer level using modifications of standard clean room (CR) fabrication techniques. Well-known conductive and insulating CR materials are investigated with respect to their biocompatibility, diffusion barrier properties, and sensitivity to corrosion. In Phase 2 of the packaging process, all chips of the final device should be electrically connected, applying a biocompatible metallization scheme using, for example, gold or platinum. For electrodes in direct contact with the tissue after implantation, IrOx metallization is proposed. Phase 3 of device assembly is the final packaging step, during which all system components, such as electronics, passives, a battery, among others, will be interconnected. To provide sufficient mechanical support, all these components are embedded using a biocompatible elastomer such as PDMS.


2017 ◽  
Vol 137 (2) ◽  
pp. 48-58
Author(s):  
Noriyuki Fujimori ◽  
Takatoshi Igarashi ◽  
Takahiro Shimohata ◽  
Takuro Suyama ◽  
Kazuhiro Yoshida ◽  
...  

2020 ◽  
Vol 11 (SPL1) ◽  
pp. 716-722
Author(s):  
Sneha Dhakite ◽  
Sadhana Misar Wajpeyi

The “Coronavirus disease 19 (COVID-19)” is caused by “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, a newly discovered member of the Coronaviridae family of viruses which is a highly communicable. There is no effective medical treatment till date for Coronavirus disease hence prevention is the best way to keep disease away. Rasayana proved to be highly efficacious and cost effective for the Prevention and Control of viral infections when vaccines and standard therapies are lacking. Rasayana Chikitsa is one of the eight branches of Ashtanga Ayurveda which helps to maintain healthy life style. Rasayana improves immunity and performs many vital functions of human body. Vyadhikshamatva that is immune mechanism of the body is involved in Prevention of the occurrence of a new disease and it also decreases the virulence and progression of an existing disease. In COVID-19 the Respiratory system mainly get affected which is evident from its symptoms like cold, cough and breathlessness. Here the drugs help in enhancing immune system and strengthening functions of Respiratory system can be useful. For this purpose, the Rasayana like Chyavanprasha, Agastya Haritaki, Pippali Rasayana, Guduchi, Yashtimadhu, Haridra, Ashwagandha, Tulsi are used. Rasayana working on Respiratory system are best for Prevention of Coronavirus and boosting immune system. Rasayana Chikitsa can be effective in the Prevention as well as reducing symptoms of COVID-19.


Author(s):  
Sreeharsha N. ◽  
Bargale Sushant Sukumar ◽  
Divyasree C. H.

Diabetes mellitus is a chronic metabolic disorder in which the body is unable to make proper utilisation of glucose, resulting in the condition of hyperglycaemia. Excess glucose in the blood ultimately results in high levels of glucose being present in the urine (glycosuria). This increase the urine output, which leads to dehydration and increase thirst. India has the largest diabetic population in the world. Changes in eating habits, increasing weight and decreased physical activity are major factors leading to increased incidence of Diabetes. Lifestyle plays an important role in the development of Diabetes. Yoga offers natural and effective remedies without toxic side-effects, and with benefits that extend far beyond the physical. This system of Yoga is a simple, natural programme involving five main principles: proper exercise, proper breathing, proper relaxation, proper diet and positive thinking and meditation. It is a cost effective lifestyle intervention technique.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Che-Jung Chang ◽  
Der-Chiang Li ◽  
Wen-Li Dai ◽  
Chien-Chih Chen

The wafer-level packaging process is an important technology used in semiconductor manufacturing, and how to effectively control this manufacturing system is thus an important issue for packaging firms. One way to aid in this process is to use a forecasting tool. However, the number of observations collected in the early stages of this process is usually too few to use with traditional forecasting techniques, and thus inaccurate results are obtained. One potential solution to this problem is the use of grey system theory, with its feature of small dataset modeling. This study thus uses the AGM(1,1) grey model to solve the problem of forecasting in the pilot run stage of the packaging process. The experimental results show that the grey approach is an appropriate and effective forecasting tool for use with small datasets and that it can be applied to improve the wafer-level packaging process.


2009 ◽  
Vol 1156 ◽  
Author(s):  
Koji Neishi ◽  
Vijay Kumar Dixit ◽  
S. Aki ◽  
Junichi Koike ◽  
K. Matsumoto ◽  
...  

AbstractA thin-amorphous MnOx layer using self-forming barrier process with a Cu-Mn alloy shows good adhesion and diffusion barrier properties between copper and dielectric layer, resulting in excellent reliability for stress and electromigration. Meanwhile, chemical vapor deposition (CVD) can be employed for conformal deposition of the barrier layer in narrow trenches and vias for future technology node. In our previous research, a thin and uniform amorphous MnOx layer could be formed on TEOS-oxide by thermal metal-organic CVD (MOCVD), showing a good diffusion barrier property. In addition, a good adhesion strength is necessary between a Cu line and a dielectric layer not only to ensure good SM and EM resistance but also to prevent film delamination under mechanical or thermal stress conditions during fabrication process such as chemical mechanical polishing or high temperature annealing. To date, no information is available with regard to the adhesion property of CVD-MnOx. In this work, we report diffusion barrier property in further detail and adhesion property in PVD-Cu/CVD-MnOx/SiO2/Si. The temperature dependence of the adhesion property is correlated with the chemical composition and valence state of Mn investigated with SIMS and Raman spectroscopy.Substrates were p-type Si wafers having a plasma-TEOS oxide of 100nm in thickness. CVD was carried out in a deposition chamber. A manganese precursor was vaporized and introduced into the deposition chamber with H2 carrier gas. After the CVD, a Cu overlayer was deposited on some samples using a sputtering system in load lock chamber of the CVD machine. The diffusion barrier property of the MnOx film was investigated in annealed samples at 400 oC for 100 hours in a vacuum of better than 1.0×10-5 Pa. The Adhesion property of Mn oxide was investigated by Scotch tape test in the as-deposited and in the annealed Cu/CVD-MnOx/TEOS samples. The obtained samples were analyzed for thickness and microstructure with TEM, chemical bonding states of the MnOx layer with XPS, and composition of each layer with SIMS.In the CVD deposition below 300 °C, no Cu delamination was observed both in the as-deposited and in the annealed Cu/CVD-MnOx/SiO2 samples. On the other hand, in the CVD deposition at 400 °C, the Cu films were delaminated from the CVD-MnOx/TEOS substrates. The XPS peak position of Mn 2p and Mn 3s spectra indicated that the valence state of Mn in the as-deposited barrier layer below 400 °C was 2+. Composition analysis with SIMS as well as Raman also indicated the presence of a larger amount of carbon at 400 °C than at less than 300 °C. The good adhesion between Cu and MnO could be attributed to an amount of carbon inclusion in the CVD barrier layer.


2017 ◽  
Vol 867 ◽  
pp. 290-293 ◽  
Author(s):  
Kandasamy Jayakrishna ◽  
P. Sanjay Guar ◽  
R. Senthilkumar ◽  
Nagarajan Aathis

Development of prototypes draws major focus in contemporary manufacturing organisations. Sustainability analysis and comparison of the prototype manufacturing process plays a vital role in deciding the sustainability level of the product. Sustainability of prototyping depends on model building material and model building process. In this paper based on the customer requirements, Environmental Conscious Quality Function Deployment (ECQFD) was carried out. Increased lives, strength, reduced toxicity of material with biodegradability were the major outputs of ECQFD. Cambridge Engineering Selector (CES) and Grey Relation Analysis (GRA) were used for material selection. Wood, ABS, Poly Lactic acid (PLA) and Lead were selected as cost efficient materials for the case product. A CAD model of the case product was developed and subjected to Life Cycle Analysis (LCA) using solid works sustainability express for the above materials. Prototypes of the case products where produced by wood carving, casting, CNC Milling and 3D printing by considering all input parameters required across each process. LCA was conducted using GaBi for the above process and the results were compared. From this study, it was observed that the case product developed using PLA with 3D printing technology had very less impact on environment and is considered as the best and cost effective prototyping method.


2013 ◽  
Vol 113 (5) ◽  
pp. 054506 ◽  
Author(s):  
P. Blösch ◽  
F. Pianezzi ◽  
A. Chirilă ◽  
P. Rossbach ◽  
S. Nishiwaki ◽  
...  

2000 ◽  
Author(s):  
Y. T. Lin ◽  
P. J. Tang ◽  
K. N. Chiang

Abstract The demands of electronic packages toward lower profile, lighter weight, and higher density of I/O lead to rapid expansion in the field of flip chip, chip scale package (CSP) and wafer level packaging (WLP) technologies. The urgent needs of high I/O density and good reliability characteristic lead to the evolution of the ultra high-density type of non-solder interconnection such as the wire interconnect technology (WIT). The new technology using copper posts to replace the solder bumps as interconnections shown a great improvement in the reliability life. Moreover, this type of wafer level package could achieve higher I/O density, as well as ultra fine pitch. This research will focus on the reliability analysis of the WIT package structures in material selection and structural design, etc. This research will use finite element method to analyze the physical behavior of packaging structures under thermal cycling condition to compare the reliability characteristics of conventional wafer level package and WIT packages. Parametric studies of specific parameters will be performed, and the plastic and temperature dependent material properties will be applied to all of the models.


Sign in / Sign up

Export Citation Format

Share Document