Voiding and Reliability of Assembly of BGA with SAC and 57Bi42Sn1Ag Alloys

2013 ◽  
Vol 2013 (1) ◽  
pp. 000128-000139 ◽  
Author(s):  
Yan Liu ◽  
Joanna Keck ◽  
Erin Page ◽  
Ning-Cheng Lee

Low melting 57Bi42Sn1Ag (BiSnAg) was explored for replacing SAC solders as a low-cost solution. In this study, BGAs with SAC105, SAC305, and BiSnAg balls were assembled with SAC105, SAC305 or 57Bi42Sn1Ag solder paste. Joint mechanical strength, drop test performance, and voiding performance were evaluated against the reflow profile. SnPb was included as a control. The findings are as follows: (1) The microstructure of solder joints showed that, among all of the combinations, only BiSnAg-105 LT and BiSnAg-305 LT exhibited well-distinguishable alloy regions. For SAC-BiSnAg systems, Sn-dendrites were noticeable at LT, while Ag3Sn needles developed at HT. The joints were homogeneous for the rest of the combinations. (2) In the shear test, combinations involving BiSnAg solder were brittle, regardless of the Bi alloy location and reflow profile, as evidenced by stress-strain curves and morphology of the ruptured surface. The strong influence of Bi on the rupture site may have been caused by the stiffening effect of solder due to the homogenized presence of Bi in the joint. With the stiffened solder, the brittle IMC interface became the weakest link upon shearing, although the brittle BiSn crystalline structure also contributed to the rupture. (3) In the drop test, all Bi-containing solder joints performed poorly compared with Bi-free systems, which was consistent with shear test results. Drop numbers increased with increasing elongation at break of solder bumps as measured in the shear test. (4) Voiding was affected by flux chemistry and reduced by low alloy homogenization temperatures and solid top factors, but was increased by low surface tension factor, melting sequence factor, overheating factor and wide pasty range factor. Compared to SAC or SnPb systems, the BiSnAg system is low in voiding if reflowed at LT. In this study, voiding had an insignificant effect on shear strength and drop test performance.

2012 ◽  
Vol 2012 (1) ◽  
pp. 000829-000843
Author(s):  
Weiping Liu ◽  
Ning-Cheng Lee ◽  
Simin Bagheri ◽  
Polina Snugovesky ◽  
Jason Bragg ◽  
...  

Board-level drop test performance was evaluated and compared for the following four different solder combinations in BGA/CSP assembly: 1) SnPb paste with SnPb balls, 2) SnPb paste with SAC105Ti balls, 3) SAC305 paste with SAC105Ti balls, and 4) SAC305 paste with SAC105 balls. Presence of Ti improved the drop test performance significantly, despite the voiding side effect caused by its oxidation tendency. It is anticipated that the voiding can be prevented with the development of a more oxidation resistant flux. The consistently poor drop test performance of 105Ti/SnPb is caused by the wide pasty range resulted from mixing SAC105 with Sn63 solder paste. The effect of Ti in this system is overshadowed by the high voiding outcome due to this wide pasty range material. In view of this, use of SAC105 BGA with SnPb solder paste is not recommended, with or without Ti addition. High reflow temperature drove fracture shift to interface at package side, presumably through building up IMC thickness beyond the threshold value. A lower reflow temperature is recommended. Electrical response is consistent with complete fracture data. But, complete fracture trend is inconsistent with that of partial fracture trend, and neither data can provide a full understanding about the failure mode. By integrating complete fracture and partial fracture into “Virtual Fracture”, the failure mechanism becomes obvious and data sets become consistent with each other.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000367-000373 ◽  
Author(s):  
Arnab Dasgupta ◽  
Fengying Zhou ◽  
Christine LaBarbera ◽  
Weiping Liu ◽  
Paul Bachorik ◽  
...  

The solder alloy SACm™0510 has been reported to be a superior alloy when used as BGA balls, exhibiting not only an outstanding drop test performance when compared to SAC105, but also as having high thermal fatigue reliability when compared to high Ag SAC solders. In this study, SACm0510 solder was evaluated as a solder paste. The voiding behavior of SGA solder joints was comparable for SACm0510, SAC105, and SC305. When evaluating SGA assemblies on a customized drop test, SACm0510 outperformed SAC105 considerably, which in turn was much better than SAC305. The drop test performance was found to improve upon thermal aging at 150°C, and the difference between the alloys reduced significantly. This was explained by the speculated grain coarsening which resulted in a softened solder joint, and consequently, a shift of fracture mode from brittle failure toward ductile failure. This model was supported by the observation of the fractured surface moving away from the interface upon thermal aging. The improvement in drop test performance upon thermal aging can be further explained by the large solder joint size of the SGA employed in this study, where the bulk property of solder weighed more than a small solder joint. When the assembled chip resistors were evaluated with a −55°C/+125°C TCT test, no failure was observed after 369 cycles for all three alloys. SAC305 appeared to be the best in maintaining the integrity of the interfacial IMC layer. SACm0510 showed a few crack lines, but less than that of SAC105. SACm0510 solder paste was found to be very compatible with BGAs with SAC305 solder joints, and no abnormal microstructure was observed after thermal aging at 150°C for 1000 hours.


2015 ◽  
Vol 772 ◽  
pp. 284-289 ◽  
Author(s):  
Sabuj Mallik ◽  
Jude Njoku ◽  
Gabriel Takyi

Voiding in solder joints poses a serious reliability concern for electronic products. The aim of this research was to quantify the void formation in lead-free solder joints through X-ray inspections. Experiments were designed to investigate how void formation is affected by solder bump size and shape, differences in reflow time and temperature, and differences in solder paste formulation. Four different lead-free solder paste samples were used to produce solder bumps on a number of test boards, using surface mount reflow soldering process. Using an advanced X-ray inspection system void percentages were measured for three different size and shape solder bumps. Results indicate that the voiding in solder joint is strongly influenced by solder bump size and shape, with voids found to have increased when bump size decreased. A longer soaking period during reflow stage has negatively affectedsolder voids. Voiding was also accelerated with smaller solder particles in solder paste.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000895-000901
Author(s):  
Jianbiao Pan

Light-Emitting Diode (LED) lighting has potential to fundamentally alter lighting by replacing incandescent and fluorescent technologies because it offers significant energy saving, longer operational life, and many other advantages. Excellent thermal management and low-cost is vital for LED lighting to become the market standard for general lighting. The packaged LED is typically soldered to the metal-core printed circuit board (MCPCB). However, as the size of the packaged LED increases, voiding in solder joints becomes a major problem since voiding increases the thermal resistance. The research questions are: what is the effect of flux in solder paste and the LED size on the voiding? What is the relationship between the voiding and the thermal performance of the LED? In this study, packaged LEDs with three different sizes were assembled to MCPCBs using solder paste with two different types of fluxes. The voiding in solder joints was imaged by an X-Ray machine. The detailed void characteristics were analyzed. The LED's junction temperature was measured based on the diode's forward voltage junction temperature measurement method. The results show that both flux in solder paste and the LED size have significant effect on the voiding. There is weak positive correlation between the voiding and the thermal performance when the voiding is over 25% coverage. However, the effect of voiding on the thermal performance is insignificance when the voiding is less than 25% coverage.


Author(s):  
Junehyeon Ahn ◽  
Hongkwon Kim ◽  
Kangho Byun ◽  
Youngmin Lee ◽  
Donghoon Jang ◽  
...  

For an application of fine pitch Ball Grid Array (BGA) or Land Grid Array (LGA) packages, ENEPIG is a promising surface finish technology of low cost, fine pitch and easy fabrication. In this paper, we study the drop test, one of the most important items of hand held device reliability test, of ENEPIG surface finished packages. This paper focuses on the drop test performance of a bond between the main board and three kinds of packages. Those packages are designed with a daisy chain for a detection of open/short during the drop test. The main board has a bar type outline and is suitable for an In-Situ data acquisition. Drop tester is composed of a drop test unit, a high speed resistance meter and a data acquisition system (PC). JEDEC Condition B (1,500G and 0.5milliseconds duration time and half-sine pulse) in JESD22-B111 Table 1 or in JESD22-B104-C Table 1 is applied as a test condition. After the drop test, the joint geometry and the intermetallic compound (IMC) of failure samples are analyzed through the cross section method. The result shows no breaks at the solder joint of package side. All breaks, however, are originated from the solder joints of main board side. It is a significant outcome of this work to show no performance difference between ENEPIG and Electrolytic Ni/Au.


2016 ◽  
Vol 9 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Dionisio H. Malagón-Romero ◽  
Alexander Ladino ◽  
Nataly Ortiz ◽  
Liliana P. Green

Hydrogen is expected to play an important role as a clean, reliable and renewable energy source. A key challenge is the production of hydrogen in an economically and environmentally sustainable way on an industrial scale. One promising method of hydrogen production is via biological processes using agricultural resources, where the hydrogen is found to be mixed with other gases, such as carbon dioxide. Thus, to separate hydrogen from the mixture, it is challenging to implement and evaluate a simple, low cost, reliable and efficient separation process. So, the aim of this work was to develop a polymeric membrane for hydrogen separation. The developed membranes were made of polysulfone via phase inversion by a controlled evaporation method with 5 wt % and 10 wt % of polysulfone resulting in thicknesses of 132 and 239 micrometers, respectively. Membrane characterization was performed using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and ASTM D882 tensile test. Performance was characterized using a 23 factorial experiment using the time lag method, comparing the results with those from gas chromatography (GC). As a result, developed membranes exhibited dense microstructures, low values of RMS roughness, and glass transition temperatures of approximately 191.75 °C and 190.43 °C for the 5 wt % and 10 wt % membranes, respectively. Performance results for the given membranes showed a hydrogen selectivity of 8.20 for an evaluated gas mixture 54% hydrogen and 46% carbon dioxide. According to selectivity achieved, H2 separation from carbon dioxide is feasible with possibilities of scalability. These results are important for consolidating hydrogen production from biological processes.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 733
Author(s):  
Lu Liu ◽  
Songbai Xue ◽  
Ruiyang Ni ◽  
Peng Zhang ◽  
Jie Wu

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 °C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from −40 °C to 125 °C for 1000 cycles were investigated. Compared to the Sn–Bi solder joint, the TSEP Sn–Bi solder joints had increased reliability. The microstructure observation shows that the epoxy resin curing process did not affect the transformation of the microstructure. The shear force of the TSEP Sn–Bi solder joints after 1000 cycles of thermal cycling test was 1.23–1.35 times higher than the Sn–Bi solder joint and after 1000 h of temperature and humidity tests was 1.14–1.27 times higher than the Sn–Bi solder joint. The fracture analysis indicated that the cured cover layer could still have a mechanical reinforcement to the TSEP Sn–Bi solder joints after these reliability tests.


2019 ◽  
Vol 14 (1) ◽  
pp. 651-657
Author(s):  
Talita Mazon ◽  
Guilherme E. Prevedel ◽  
Egont A. Schenkel ◽  
Marcio T. Biasoli

Sign in / Sign up

Export Citation Format

Share Document