scholarly journals DETERMINATION OF CONTAMINATATED WELLS TO NO3-N: A NOVEL VULNERABILITY ASSESSMENT TOOL

Author(s):  
Pijush Samui ◽  
Barnali Dixon

Contamination of well with nitrate-N (NO3-N) posses various threats to human health. This problem becomes even more critical when these wells serve as source of drinking water as in the case of many rural parts of USA. This article employs Relevance Vector Machine (RVM) for determination of non-contaminated and contaminated well with nitrate-N (NO3-N) in Polk County, Florida (USA). This research will provide a regional scale integrated GIS-based modeling approach to predict NO3-N contamination of ground water in a cost effective way. This approach also allows for higher true positive results (TPR) with fewer variables when data are imprecise and full of uncertainty which is common with available regional scale data). RVM technique is a Bayesian extension of the Support Vector Machine (SVM). Here, the RVM has been used as a classification tool. Well water quality data (nitrate-N) from 6,917 wells provided by Florida Department of Environmental Protection (USA) has been used to develop the RVM model. An equation has been also presented from the developed RVM model. The developed RVM has been compared with the Artificial Neural Network (ANN) and SVM models. This study shows that the developed RVM produces promising result for prediction of non-contaminated and contaminated well with N. The model is important because its real world applications enable water managers to more effectively manage contaminant levels within specific watersheds.

1993 ◽  
Vol 28 (3-5) ◽  
pp. 205-213 ◽  
Author(s):  
Billy Hipp ◽  
Susan Alexander ◽  
Tim Knowles

Runoff from typical urban and suburban landscapes may contain significant levels of nitrogen, phosphorus, and a broad spectrum of various pesticides (mainly herbicides and insecticides) due to excessive application rates of these chemicals and high irrigation requirements of most commonly used landscape plant species. Preliminary water quality data (runoff) from a comparative study of 20 microwatersheds using 4 different levels of maintenance, show reductions in these types of pollutants in runoff for microwatersheds planted to resource efficient plants. Utilization of plants indigenous to an ecoregion (and other resource efficient plants) in landscape design and management allows considerable reduction in inputs from fertilizer, water, and pesticides. This results in lower pollutant concentrations in runoff and is estimated to result in lower total pollutant loadings from such systems. Installation of native or resource efficient plants in new developments (commercial and residential) and replacement of existing landscapes with these plants as older plants die or neighborhoods are updated could provide cities and suburban areas with a cost-effective, low-maintenance, and aesthetically-pleasing pollution control technology. Data from the comparative study should provide municipalities charged with meeting the new requirements of the National Pollutant Elimination Discharge System with a way to compare the pollution prevention effectiveness of resource-efficient landscapes with more traditional structural urban runoff controls.


Author(s):  
J. Jagan ◽  
Prabhakar Gundlapalli ◽  
Pijush Samui

The determination of liquefaction susceptibility of soil is a paramount project in geotechnical earthquake engineering. This chapter adopts Support Vector Machine (SVM), Relevance Vector Machine (RVM) and Least Square Support Vector Machine (LSSVM) for determination of liquefaction susceptibility based on Cone Penetration Test (CPT) from Chi-Chi earthquake. Input variables of SVM, RVM and LSSVM are Cone Resistance (qc) and Peak Ground Acceleration (amax/g). SVM, RVM and LSSVM have been used as classification tools. The developed SVM, RVM and LSSVM give equations for determination of liquefaction susceptibility of soil. The comparison between the developed models has been carried out. The results show that SVM, RVM and LSSVM are the robust models for determination of liquefaction susceptibility of soil.


2011 ◽  
Vol 347-353 ◽  
pp. 781-785
Author(s):  
Qun Cao ◽  
Bing Xiang Liu ◽  
Xiang Chen

According to the nonlinearity and uncertainty of the water quality data samples, a forecasting model based on Simulated Annealing Genetic Algorithm(SAGA)and least squares support vector machines(LS-SVM) is proposed. Through adaptively optimizing the model parameters of LS-SVM by SAGA, we can apply the model to forecast water quality of Poyang Lake. The experimental results indicate that compared to the typical LS-SVM,the model is very practical and with higher precision.


Author(s):  
Yuni Yolanda ◽  
Hefni Effendi ◽  
Bagus Sartono

The operation and development of the harbour is closely related to pollutant sources in the waters, especially the waters of the Belawan Harbour in Medan. This study aims to assess the status of water quality and determine the index of pollution in the waters. The data used in this study are water quality data from the Medan Harbour's environmental management monitoring and reharbouring book in 4 (four) years during 2015 to 2018. Methods for determining the level of water quality status using the STORET method (Water Quality Data Retention and Retrieval System) and compared to the quality standards of Environmental Decree from Republic Indonesia Number 51 of 2004. Based on the analysis of the testing of 14 seawater sampling points around the waters of harbour, results of measurements of seawater quality in physics, chemistry and biology were varied. The level of pollution of the waters of Belawan Harbour shows the results of analysis that the waters of the Belawan Harbour are in the moderate polluting class with a value of -12 to -19, while 1 (one) station is in the light polluted class with a value of -10.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1124 ◽  
Author(s):  
Zaher Yaseen ◽  
Mohammad Ehteram ◽  
Ahmad Sharafati ◽  
Shamsuddin Shahid ◽  
Nadhir Al-Ansari ◽  
...  

The current study investigates an improved version of Least Square Support Vector Machines integrated with a Bat Algorithm (LSSVM-BA) for modeling the dissolved oxygen (DO) concentration in rivers. The LSSVM-BA model results are compared with those obtained using M5 Tree and Multivariate Adaptive Regression Spline (MARS) models to show the efficacy of this novel integrated model. The river water quality data at three monitoring stations located in the USA are considered for the simulation of DO concentration. Eight input combinations of four water quality parameters, namely, water temperature, discharge, pH, and specific conductance, are used to simulate the DO concentration. The results revealed the superiority of the LSSVM-BA model over the M5 Tree and MARS models in the prediction of river DO. The accuracy of the LSSVM-BA model compared with those of the M5 Tree and MARS models is found to increase by 20% and 42%, respectively, in terms of the root-mean-square error. All the predictive models are found to perform best when all the four water quality variables are used as input, which indicates that it is possible to supply more information to the predictive model by way of incorporation of all the water quality variables.


2005 ◽  
Author(s):  
◽  
Masupha Letsie

Lesotho is a land locked country, entirely surrounded by the Republic of South Africa. Maseru is the capital of Lesotho and the country’s main centre for commerce and industry. The study area is located on the North-Eastern outskirts of the Maseru urban area. The catchment occupies an area of 44km2 with a length of about 13 km and channel slope of 0.4 km/km. The Maqalika Reservoir was built in 1983 to meet the water demands for Maseru city up to 1995, and its storage capacity was 3.7 Mm3. The storage is gradually decreasing as sediment, carried by the natural run-off accumulates in the reservoir. Moreover, water pumped into the reservoir from the Caledon River (which is heavily sedimented) adds its own contribution of silt. The reservoir is located in a very densely populated area, and is heavily polluted leading to high purification costs. The study was motivated by the fact that Welbedacht Dam was constructed in 1973 in the Caledon catchment but downstream of Maqalika. After 20 years, 85% of the volume of the dam was silted. The study was intended in finding whether the positioning of the Maqalika reservoir is acceptable and to find its remaining capacity as a water body supplying a fast growing city. Consideration was also given to the effect of land use practices on the water quality of the Maqalika reservoir, including the cost incurred during purification. The water quality data on physico- chemical was collected from the Water and Sewerage Authority and was analysed using excel spreadsheets. Results obtained were compared with WHO, SABS and National Standards of Lesotho. It was found that nitrates, phosphates and faecal coliforms levels were by far above minimum standards rendering water to be very contaminated and the source being leaking sewers, defeacation in dongas and leachate from Tsosane and Lower Thamae dumping site. Iron levels were also high with mean values beyond 0.3mg/l and the source being leachate from dumping sites, poor disposal of scraps and minerals from soil. Conductivity levels were high and the suspected source is waste solid disposal having a maximum of 442mS/m in March 2001. Hardness, temperature and alkalinity do not pose much danger to Maqalika water since recorded results were almost within limits. Turbidity levels were very high and the main source was found to be catchment sedimentation through run-off. For determination of the impact of sedimentation through pumping, hydrological data was obtained from the Department of Water Affair (DWA) and analysed using Excel spreadsheets to get sediment concentrations. A linear regression graph was plotted using discharge against sediment concentration that yielded y = 0.0007x – 0.0019. This was used in the Rooseboom mathematical equation for estimation of volume occupied by sediment from 1983 - 2002 and was found to be 6789 m3. For determination of the impact due to catchment run-off, a map method of estimating sedimentation from ungauged catchments developed by Rooseboom was used and a volume of 4.598 x 106 m3 was obtained showing that the main contributor of sedimentation in the reservoir is catchment run-off. The chemical costs employed during purification were also compared between WASA and Umgeni Water of Kwazulu- Natal and WASA was found to be expensive with 9 cents/kl while Umgeni spent only 5.24 cents/kl.


2008 ◽  
Vol 58 (9) ◽  
pp. 1797-1802 ◽  
Author(s):  
Richard Grayson ◽  
Paul Kay ◽  
Miles Foulger

Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to ‘end of pipe’ solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 394 ◽  
Author(s):  
Mohammad Nazari-Sharabian ◽  
Masoud Taheriyoun ◽  
Sajjad Ahmad ◽  
Moses Karakouzian ◽  
Azadeh Ahmadi

The total phosphorus (TP) concentration, as the primary limiting eutrophication factor in the Mahabad Dam reservoir in Iran, was studied, considering the combined impacts of climate change, as well as the scenarios on changes in upstream TP loadings and downstream dam water allocations. Downscaled daily projected climate data were obtained from the Beijing Normal University Earth System Model (BNU-ESM) under moderate (RCP4.5) and extreme (RCP8.5) scenarios. These data were used as inputs of a calibrated Soil and Water Assessment Tool (SWAT) model of the watershed in order to determine the effects of climate change on runoff yields in the watershed from 2020 to 2050. The SWAT model was calibrated/validated using the SUFI-2 algorithm in the SWAT Calibration Uncertainties Program (SWAT-CUP). Moreover, to model TP concentration in the reservoir and to investigate the effects of upstream/downstream scenarios, along with forecasted climate-induced changes in streamflow and evaporation rates, the System Dynamics (SD) model was implemented. The scenarios covered a combination of changes in population, agricultural and livestock farming activities, industrialization, water conservation, and pollution control. Relative to the year 2011 in which the water quality data were available, the SD results showed the highest TP concentrations in the reservoir under scenarios in which the inflow to the reservoir had decreased, while the upstream TP loadings and downstream dam water allocations had increased (+29.9%). On the other hand, the lowest TP concentration was observed under scenarios in which upstream TP loadings and dam water allocations had decreased (−18.5%).


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 13
Author(s):  
Narayanan Kannan

Overall health of a stream is one of the powerful indicators for planning mitigation strategies. Currently, available methods to estimate stream health do not look at all the different components of stream health. Based on the statistical parameters obtained from daily streamflow data, water quality data, and index of biotic integrity (IBI), this study evaluated the impacts on all the elements of stream health, such as aquatic species, riparian vegetation, benthic macro-invertebrates, and channel degradation for the Plum Creek watershed in Texas, USA. The method involved the (1) collection of flow data at the watershed outlet; (2) identification of hydrologic change in the streamflow; (3) estimation of hydrologic indicators using NATional Hydrologic Assessment Tool (NATHAT) before alteration and after alteration periods; (4) identification of the most relevant indicators affecting stream health in the watershed based on stream type; (5) preliminary estimation of the existence of stream health using flow duration curves (FDCs); (6) the use of stream health-relevant hydrologic indices with the scoring system of the Dundee Hydrologic Regime Assessment Method (DHRAM). The FDCs plotted together for before and after the alteration periods indicated the likely presence of a stream health problem in the Plum Creek. The NATHAT–DHRAM method showed a likely moderate impact on the health of Plum Creek. The biological assessments carried out, the water quality data monitored, and the land cover during pre- and post-alteration periods documented in a publicly available federal document support the stream health results obtained from this study.


Sign in / Sign up

Export Citation Format

Share Document