scholarly journals Curtisia dentata (Cornaceae) leaf extracts and isolated compounds inhibit motility of parasitic and free-living nematodes

Author(s):  
L.J. Shai ◽  
E.S. Bizimenyera ◽  
V. Bagla ◽  
L.J. McGaw ◽  
J.N. Eloff

Haemonchus contortus and Trichostrongylus colubriformis are among the most important parasitic nematodes of small ruminants. Caenorhabditis elegans, a free-living nematode, is used as a model for evaluating anthelmintic activity of a variety of test substances. Extracts of several medicinal plants are useful in vitro and in vivo against nematode development. Extracts of Curtisia dentata, a South African medicinal plant, and compounds isolated from leaves of this plant were investigated for anthelmintic activity against T. colubriformis, H. contortus and C. elegans. The acetone and dichloromethane extracts were active against all nematodes at concentrations as low as 160 μg/mℓ. Betulinic acid and lupeol were active against the parasitic nematodes only at the high concentrations of 1 000 and 200 μg/mℓ, respectively. All compounds were effective against C. elegans with active concentrations as low as 8 μg/mℓ. Betulinic acid was less active than lupeol and ursolic acid against C. elegans. The acetone and dichloromethane extracts were also active against C. elegans with a concentration of 0.31 mg/mℓ resulting in almost 80 % inhibition of larval motility. The use of free-living nematodes may provide information on the activity of potential anthelmintics against parasitic nematodes. Extracts of various medicinal plant species may provide solutions to ill-health of small ruminants caused by parasitic nematodes in poor communities of southern Africa.

2017 ◽  
Vol 54 (3) ◽  
pp. 218-224 ◽  
Author(s):  
S. Irum ◽  
H. Ahmed ◽  
B. Mirza ◽  
K. Donskow-Łysoniewska ◽  
A. Muhammad ◽  
...  

SummaryIn the northern areas of Pakistan, the use of Artemisia based therapeutics is a common practice. Plants of genus Artemisia are known to possess anthelmintic and therapeutic effect. Infections caused by gastrointestinal nematodes are major threat to livestock industry across the world resulting in loss of production and indirect economic losses due to high cost of anthelmintic drugs. Present study was carried out to evaluate in vitro and in vivo effect of Artemisia sieversiana and Artemisia parviflora on Haemonchus contortus, a parasitic nematode of small ruminants. Methanolic plant extract was tested against three different developmental stages using an egg hatch assay, infective larvae and adult worm motility assay. Different concentrations were used for the bioassays and post exposure mortality was recorded after 8 hr for adult worms and infective larvae, while egg inhibition percentage was observed after 27 hr. A highly significant ability to inhibit the egg hatching (100 %) was recorded for both plant extracts while, the highest activity for adult worm assay and larvicidal assay was 90 % for A. sieversiana. The highest activity for adult motility and larvicidal assay for A. parviflora was 89 % and 86.6 % respectively. For in vivo trials maximum parentage reduction was 77.0 % for A. sieversiana and 73.6 % for A. parviflora. It is concluded that selected plant extracts were effective in reducing worm burden in animals.


2015 ◽  
Vol 24 (3) ◽  
pp. 268-275 ◽  
Author(s):  
Iara Tersia Freitas Macedo ◽  
Lorena Mayana Beserra de Oliveira ◽  
Wesley Lyeverton Correia Ribeiro ◽  
Jessica Maria Leite dos Santos ◽  
Kaline das Chagas Silva ◽  
...  

Parasitic nematodes are of major economic importance in livestock. An alternative for the control of parasites is phytotherapy. This study evaluated the efficacy of Cymbopogon citratus decoction (CcD), C. citratus essential oil (CcEo) and citral against Haemonchus contortus using in vitro egg hatch test (EHT) and larval development test (LDT) and an in vivo test using a Meriones unguiculatus (gerbil) model. The effect of 800 mg/kg CcEo was evaluated in gerbils that had been artificially infected with 5,000 third-stage H. contortus larvae. The effective concentrations required to inhibit 50% (EC50) of egg hatching were 0.46, 0.14 and 0.13 mg/mL for CcD, CcEo and citral, respectively. The EC50 values in the LDT were 5.04, 1.92 and 1.37 mg/mL for CcD, CcEo and citral, respectively. H. contortus population in the group treated with C. citratus essential oil was reduced by 38.5% (P< 0.05) in comparison to the control group. These results suggest that it may be possible to use C. citratusessential oil to control of H. contortus parasite of small ruminant.


2020 ◽  
Author(s):  
Yujian Wang ◽  
Muhammad Ehsan ◽  
Jianmei Huang ◽  
Kalibixiati Aimulajiang ◽  
RuoFeng Yan ◽  
...  

Abstract Background: Suppression and modulation of the immune response of the host by nematode parasites have been reported widely. Rhodaneses or thiosulfate: cyanide sulfurtransferases are present in a wide range of organisms, such as archea, bacteria, fungi, plants and animals. Previously, it was reported that a rhodanese homology could bind by goat peripheral blood mononuclear cells (PBMCs) in vivo.Results: In the present study, we cloned and produced recombinant rhodanese protein originated from Haemonchus contortus (rHCRD), which was one of the parasitic nematodes of small ruminants. The effect of this protein on modulating the immunity of goat PBMC and monocyte was studied in the current work. The predominant localization of the natural HCRD protein was verified as the bowel wall and body surface of worms, according to the immunohistochemical tests. It was proved in this study that the serum produced by artificially infecting goats with H. contortus successfully recognized rHCRD which conjugated goat PBMCs. The rHCRD was co-incubated with goat PBMCs to observe the immunomodulatory effect on proliferation, apoptosis and secretion of cytokines exerted by HCRD. The results showed that the interaction of rHCRD suppressed proliferation of goat PBMCs stimulated by ConA but did not induce the apoptosis of goat PBMCs. After rHCRD exposure, the production of TNF-α and IFN-γ were significantly decreased, however, it significantly increased the secretion of IL-10 and TGF-β1 in goat PBMCs. Phagocytotic assay by FITC-dextran internalization showed that rHCRD inhibited the phagocytosis of goat monocytes. Moreover, rHCRD could down-regulate the expression of MHC-II on goat monocytes in a dose-dependent manner. Conclusions: These discoveries proposed a possible target as immunomodulator, which was potentially beneficial to illuminate the interaction between parasites and hosts in the molecular level and hunt for innovative protein species as candidate targets of drug and vaccine.


Author(s):  
Syed Nadeem Badar ◽  
Zafar Iqbal ◽  
Muhammad Sohail Sajid ◽  
Hafiz Muhammad Rizwan ◽  
Muhammad Shareef ◽  
...  

Abstract In the present study, anthelmintic activities of Arundo (A.) donax L., Areca (Ar.) catechu L., and Ferula (F.) assa-foetida L. were determined. Leaves of A. donax L., latex of F. assa-foetida L. and seeds of Ar. catechu L. in different solvent fractions were subjected to in vitro (egg hatch assay; EHA, and adult motility assay; AMA) and in vivo (faecal egg count reduction test; FECRT) tests of anthelmintic activity using Haemonchus contortus model. In the AMA, crude aqueous methanol extracts (CAME) and ethyl acetate fractions of F. assa-foetida at 10 hr post-treatment showed maximum mortality of H. contortus at 12.5-50 mg mL-1. In the EHA, CAME of F. assa-foetida was identified as a potent ovicide based on its low LC50 (16.9 µg mL-1), followed in order by Ar. catechu and A. donax. Results from the FECRT also showed the extract of F. assa-foetida L. to be more effective than those of Ar. catechu L. and A. donax L., against the gastrointestinal parasitic nematodes. Chloroform and ethyl acetate fractions showed better anthelmintic activities against the adult worms in vitro, while CAME of these plants were better than their crude powders in vivo. It is recommended to document and investigate indigenous knowledge of possible medicinal plants to plan scientific trials that may justify their endorsement.


Parasitology ◽  
2019 ◽  
Vol 146 (10) ◽  
pp. 1233-1246 ◽  
Author(s):  
Francianne Oliveira Santos ◽  
Amanda Ponce Morais Cerqueira ◽  
Alexsandro Branco ◽  
Maria José Moreira Batatinha ◽  
Mariana Borges Botura

AbstractThe gastrointestinal nematodes (GIN) stand out as an important cause of disease in small ruminant, especially on goat farm. Widespread resistance to synthetic anthelminthics has stimulated the research for alternative strategies of parasite control, including the use of medicinal plants. The present work summarizes the in vitro and in vivo studies of plants with activity against GIN of goats, focusing on the description of chemical constituents related to this effect. This review retrieved 56 scientific articles from 2008 to 2018 describing more than 100 different plant species. The most frequently investigated family was Fabaceae (30.7%). Most in vitro studies on the activity of plant extracts and fractions were carried out with of free-living stages nematodes. In vivo studies were conducted mainly with the use of plants in animal feed and generally showed lower effectiveness compared to in vitro assays. The main plant secondary metabolites associated with anthelmintic effect are condensed tannins, saponin and flavonoids. However, the studies with compounds isolated from plants and elucidation of their mechanisms of action are scarce. Herbal medicines are thought to be promising sources for the development of effective anthelmintic agents.


Parasitology ◽  
2009 ◽  
Vol 137 (4) ◽  
pp. 685-696 ◽  
Author(s):  
F. MANOLARAKI ◽  
S. SOTIRAKI ◽  
A. STEFANAKIS ◽  
V. SKAMPARDONIS ◽  
M. VOLANIS ◽  
...  

SUMMARYThe anthelmintic properties of tannin-rich plants are being explored as an alternative to chemical drugs. Most data have been acquired on legume forages, but only few on browse plants. The present study aimed to (i) screen the in vitro effects of extracts from 7 Mediterranean plants on Haemonchus contortus, (ii) verify the role of tannins using an inhibitor, polyvinyl polypyrrolidone (PVPP) and (iii) verify the in vivo effects of extracts from 4 plants. Significant inhibition was shown in vitro using a larval migration inhibition (LMI) assay for all extracts except that from Olea europaea var. koroneiki. After adding PVPP, the LMI values were restored to control levels for all plants except Pistacia lentiscus and Ceratonia siliqua, confirming a role for tannins in the activity. In the in vivo experiment, 48 lambs composed 6 groups, depending on diet. On Day 0, groups G1–G5 received H. contortus and Trichostrongylus colubriformis larvae and G6 remained uninfected. The various diets were distributed from Days 14 to 45: P. lentiscus (G1), Quercus coccifera (G2), C. siliqua (G3), Onobrychis viciifolia (G4), or Medicago sativa for the 2 control groups (G5, G6). Egg excretion, packed cell volumes (PCVs) and inorganic phosphate were measured weekly throughout the entire experimental period. At slaughter, the worms were enumerated and their fecundity assessed. Consumption of the 4 browser plants did not provoke differences in pathophysiological measurements but there were significant decreases in egg excretion, mainly explained by significant decreases in worm fecundity for both species, without any statistical difference in worm numbers.


Author(s):  
Vanessa Daniele Mottin ◽  
Jurandir Ferreira da Cruz ◽  
Milton Resende Teixeira Neto ◽  
Gabriele Marisco ◽  
Jennifer Souza Figueredo ◽  
...  

SUMMARY The use of medicinal plants as a therapeutic method in the control of diseases has been increasing in animal production. In the case of small ruminants, the endoparasitic disease is a major concern, since they are considered the greater sanitary problem, especially when considering the phenomenon of parasite resistance to the medicines used. Therefore, the development of alternative methods of endoparasitary control in goats and sheep has become a pressing need. The use of plants to control endoparasites can reduce the use of chemical inputs, making more environmentally sustainable livestock, minimizing the occurrence of parasitic resistance to conventional medicines and contributing to the reduction of production costs. In this sense, several studies have been carried out in order to evaluate the in vitro and in vivo activity of plants with anthelmintic potential. However, despite the potentiality found in many studies, the results are sometimes contradictory or do not replicate in vivo the same efficacy obtained in the in vitro assays. Another relevant aspect is the low utilization of the lethality and toxicity tests, which are indispensable so that the knowledge can be spread and applied by the producers in their herds. Thus, this review aims to provide the results from studies carried out in Brazil with extract of plants with potential for control of parasitic disease in goats and sheep, describing the main evaluated plants species, mechanisms of action, preparation forms and tests of efficacy, toxicity, and lethality.


Parasite ◽  
2021 ◽  
Vol 28 ◽  
pp. 64
Author(s):  
Michela Maestrini ◽  
Marcelo Beltrão Molento ◽  
Mario Forzan ◽  
Stefania Perrucci

This study evaluated the in vitro anthelmintic activity of a liquorice (Glycyrrhiza glabra) root aqueous extract and of glycyrrhetinic acid at 30, 10, 5, 1, and 0.5 mg/mL against sheep gastrointestinal nematodes (GINs), using the egg hatch test (EHT), the larval development test (LDT), and the larval migration inhibition test (LMIT). The compounds were applied on a mixture of GIN eggs and larvae, mainly Trichostrongylus spp. and Teladorsagia/Ostertagia spp. Cytotoxicity assays were also performed. In the EHT, both candidates showed significant concentration-dependent efficacy and were significantly more effective (p < 0.001) at the highest concentrations (30 and 10 mg/mL) than the lowest ones. In the LDT, only G. glabra showed a concentration-dependent effect (R2 = 0.924), but glycyrrhetinic acid (R2 = 0.910) had significantly higher efficacy than G. glabra root extract. Moreover, the efficacy of glycyrrhetinic acid at 30, 10, and 5 mg/mL was significantly higher (p < 0.001) than at lower concentrations. In the LMIT, G. glabra showed concentration-dependent efficacy (R2 = 0.971), while considerably reduced efficacy was observed for glycyrrhetinic acid (R2 = 0.855) at the lowest concentrations. These data suggest that the two compounds may have different mechanisms of action. In the LMIT, the 50% lethal concentration (LC50) of glycyrrhetinic acid (~5.12 mg/mL) was > 2.0-fold lower when compared to G. glabra (12.25 mg/mL). Analysis and previous findings indicated low toxicity for both compounds. The results obtained encourage in vivo studies aimed at evaluating the potential use of the tested compounds as natural de-wormers in ruminants.


2010 ◽  
Vol 85 (3) ◽  
pp. 304-312 ◽  
Author(s):  
D. Ndjonka ◽  
C. Agyare ◽  
K. Lüersen ◽  
B. Djafsia ◽  
D. Achukwi ◽  
...  

AbstractEthanolic and aqueous extracts of selected medicinal plants from Cameroon and Ghana were assessed for their in vitro anthelmintic activity by using the bovine filarial parasite Onchocerca ochengi and the free living nematode Caenorhabditis elegans, a model organism for research on nematode parasites. Worms were incubated in the presence of different concentrations of extracts and inhibitory effects were monitored at different time points. Among the extracts used in this study, ethanolic extracts of Anogeissus leiocarpus, Khaya senegalensis, Euphorbia hirta and aqueous extracts from Annona senegalensis and Parquetina nigrescens affected the growth and survival of C. elegans and O. ochengi significantly. The mortality was concentration dependent with an LC50 ranging between 0.38 and 4.00 mg/ml for C. elegans (after 72 h) and between 0.08 and 0.55 mg/ml for O. ochengi after a 24 h incubation time. Preliminary phytochemical screenings on these extracts revealed the presence of flavonoids, alkaloids, saponins, carbohydrates and tannins in the extracts. Accordingly, application of A. leiocarpus, K. senegalensis, E. hirta and A. senegalensis extracts could provide alternatives in the control of helminthic infections.


2005 ◽  
Vol 4 (6) ◽  
pp. 1147-1154 ◽  
Author(s):  
Stephen M. Beverley ◽  
Katherine L. Owens ◽  
Melissa Showalter ◽  
Cara L. Griffith ◽  
Tamara L. Doering ◽  
...  

ABSTRACT Galactofuranose (Gal f ) is a novel sugar absent in mammals but present in a variety of pathogenic microbes, often within glycoconjugates that play critical roles in cell surface formation and the infectious cycle. In prokaryotes, Gal f is synthesized as the nucleotide sugar UDP-Gal f by UDP-galactopyranose mutase (UGM) (gene GLF). Here we used a combinatorial bioinformatics screen to identify a family of candidate eukaryotic GLFs that had previously escaped detection. GLFs from three pathogens, two protozoa (Leishmania major and Trypanosoma cruzi) and one fungus (Cryptococcus neoformans), had UGM activity when expressed in Escherichia coli and assayed in vivo and/or in vitro. Eukaryotic GLFs are closely related to each other but distantly related to prokaryotic GLFs, showing limited conservation of core residues around the substrate-binding site and flavin adenine dinucleotide binding domain. Several eukaryotes not previously investigated for Gal f synthesis also showed strong GLF homologs with conservation of key residues. These included other fungi, the alga Chlamydomonas and the algal phleovirus Feldmannia irregularis, parasitic nematodes (Brugia, Onchocerca, and Strongyloides) and Caenorhabditis elegans, and the urochordates Halocynthia and Cionia. The C. elegans open reading frame was shown to encode UGM activity. The GLF phylogenetic distribution suggests that Gal f synthesis may occur more broadly in eukaryotes than previously supposed. Overall, GLF/Gal f synthesis in eukaryotes appears to occur with a disjunct distribution and often in pathogenic species, similar to what is seen in prokaryotes. Thus, UGM inhibition may provide an attractive drug target in those eukaryotes where Gal f plays critical roles in cellular viability and virulence.


Sign in / Sign up

Export Citation Format

Share Document